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ABSTRACT

Back-propagation (BP) is now a classic learning paradigm
whose source of supervision is exclusively from the external
(input/output) nodes. Consequently, BP is easily vulner-
able to curse-of-depth in (very) Deep Learning Networks
(DLNs). This prompts us to advocate Internal Neuron’s
Learnablility (INL) with (1)internal teacher labels (ITL); and
(2)internal optimization metrics (IOM) for evaluating hidden
layers/nodes. Conceptually, INL is a step beyond the notion
of Internal Neuron’s Explainablility (INE), championed by
DARPA’s XAI (or AI3.0). Practically, INL facilitates a struc-
ture/parameter NP-iterative learning for (supervised) deep
compression/quantization: simultaneously trimming hidden
nodes and raising accuracy. Pursuant to our simulations, the
NP-iteration appears to outperform several prominent pruning
methods in the literature.

Index Terms— Internal Learning, Internal Optimiza-
tion Metrics (IOM), structural-parameter learning, BPOS
NP-iteratom, (supervised) deep compression/quantization.

1. INTRODUCTION

By viewing the DLN as a black box, cf. Figures 1(a,b), BP
is an external learning paradigm. Traditionally, BP is only
used for parameter learning of DLNs, leaving the task of find-
ing optimal structure to trial and error. To rectify this, there
are recently novel approaches to structural tuning via external
regulation, e.g. Louizos et al. [1] and Zhuang et al. [2].

2. SUPERVISED NET LEARNING VIA INTERNAL
OPTIMIZATION METRICS (IOM)

BP learning on deep nets may suffer from vanishing/exploding
gradients of an external optimization metric(EOM) [3]. This
in turn induces the curse of depth problem [3–5]. To mitigate
this problem, we propose an internal learning paradigm, al-
lowing the hidden nodes to be directly trained. This requires
that teacher labels to be sent to all the hidden nodes, just like
the “Trojan-horses”. This leads to an Omnipresent Supervi-
sion(OS) internal learning strategy, where internal teacher
labels are ubiquitously accessible to all hidden nodes, as
exemplified by Figures 1(a,c).
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Fig. 1. For classification problem, the teacher labels can
be metaphorically hidden in “Trojan-horses” and transported
(along with the data) from the input layer to all hidden nodes.
(a) The original label, say B, is being sent to all hidden nodes;
(b) External teacher only; (c) Possible internal teacher labels
ITLs are: granularity-adaptive (class or super-class), layer-
adaptive, or end-user-adaptive to facilitate INE in XAI.

Internal learning applies only to classification problems
[6], where the training dataset consists of a set of pairs de-
noted as [X ,Y] = [x1, y1], [x2, y2], . . . , [xN , yN ] where a
teacher value, yt, is assigned to each training vector xt, for
t = 1, · · · , N . Let L denote the number of different classes
with N` denoting the number of training vectors associated
with the l-th class, l = 1, · · · , L, and teacher values are dis-
crete labels, i.e. yt ∈ class labels.

Denote the “center-adjusted” scatter matrix as S̄ ≡
X̄X̄T , which can be divided into two parts [7]:

S̄ = SB + SW (1)

where within-class/between-class scatter matrix SW /SB are:

SW =

L∑
`=1

N∑̀
j=1

[x
(`)
j −

−→µ `][(x
(`)
j −

−→µ `]
T (2)

SB =

L∑
`=1

N` [−→µ ` −
−→µ ][−→µ ` −

−→µ ]T ≡∆∆T (3)

where ∆ ∈ <M×L represents the centroids matrix.
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IOM: Discriminant Information (DI)
Internal learning requires a clear definition of IOM, i.e. an in-
ternal metric to facilitate the local learning/optimization pro-
cess in each hidden node/layer. To this end, we note that
maximizing SNR involves a ratio between SB versus SW

which, thanks to Eq. [1], is equivalent to maximizing the
ratio between SB versus S̄. The latter leads to a new met-
ric named Discriminant Information (DI), stemming from a
combination of Fisher’s discriminant analysis and Shannon’s
mutual information [7–10]. For assessing the goodness of
space/subspace/node of any hidden layer, we propose:

DI(W) = tr
(
[WT S̄W + ρI]−1[WTSBW]

)
(4)

(The ridge ρ is meant to safeguard numerical inversion of S̄.)
To assess the IOM of the full space of a layer, we set W = I:

DI = DI(I) = tr
(
[S̄ + ρI]−1SB

)
(5)

For (supervised) deep compression, we make a good use of:

Wikeep
=

 0 0 ··· 0 0

0
... ··· ··· 0

... ··· 1 ··· ...

0 ··· ··· ... 0
0 0 ··· 0 0

 Widrop =

 1 0 ··· 0 0

0
... ··· ··· 0

... ··· 0 ··· ...

0 ··· ··· ... 0
0 0 ··· 0 1


where Wikeep

/Widrop keeps/drops only the i-th node/channel.
For pruning nodes/channels in MLP/ConvNet, we adopt:

• Fisher Discriminant Ratio (FDR):
FDR = DI(Wikeep

) is the value of the i-th node/channel.
• Dispensability of a node/channel: DI-Loss:

DILoss ≡ DI(I) − DI(Widrop) is the remaining value
of the layer after removing the i-th node/channel. This
reflects the dispensability of the i-th node/channel.

Remark: For pruning channels in ConvNet, we use a similar
DI-metric except that Wikeep

/ Widrop must be first converted
into a block-matrix form: Wikeep

⊗ I / Widrop ⊗ I .
3. NP ITERATIVE NET PRUNING METHODS

We propose an (EM-style) NP iterative learning algorithm,
where N stands for Net and P for Parameter, pictorially illus-
trated below:

3.1. Unsupervised NP-Iterative Pruning of Links

Lacking a (supervised) IOM, we have to do with an unsuper-
vised selection metric in implementing the N-phase of NP-
iteration. Intuitively, links (weights) with lowest-magnitude
are good candidates to be removed. This is the approach
adopted by Han et al. and Iandola et al. [11, 12].

3.2. BPOS Iteration: Seamless Integration of EOM/IOM

Our supervised BPOS NP-method involves both (1) BP
parameter-learning (based on EOM) and (2) OS net-learning
(based on IOM), so we must strive for an acceptable con-
sistency between EOM and IOM. Assuming Gaussian dis-
tribution and one-hot-encoding of the teacher values, LSE
and DI metrics are essentially equivalent under the balanced
scenarios(i.e. equal size per class) [10, 13].

For the unbalanced scenarios(i.e. with unequal sizes), the
same equivalence can be preserved by adopting a renormalized-
one-hot-encoding, where the teacher values will replaced by√
Ni

−1
instead of “1”. Such encoding assures consistency

between EOM and IOM, fostering OStrim’s BPOS learning,
where the external BP learning [14–16] and the internal OS
learning [17] are both employed.
3.3. OStrim: Supervised NP-Iterative Pruning

As shown in Algorithm 1, OStrim trims unwanted nodes, in-
stead of links, by iteratively repeating : (i) Net Updating to
remove the low-score hidden neurons based on the supervised
IOM and (ii) Parameter Updating via external BP learning.
(The iterations continue until the accuracy improvement sat-
urates or starts to downgrade.)

Algorithm 1: NP Iterative Pruning Method
Input : Original Network Net, Pruning Ratio α
Output: Pruned Network Netp

1 Out-source or BP-train a base-net Net, let Netp ← Net
2 while Accuracy ≥ Threshold do
3 Net Updating: Based on the IOM score, e.g. FDR or DILoss,

drop a small fraction of lowest-scored nodes/channels.
4 Parameter Updating: Based on the EOM score, apply BP to

externally train Net′ into Net′′, let Netp ← Net′′

5 end
6 return Netp

3.4. OStrim is Conducive to Implicit Regularization
To highlight the critical roles played by DI, the follow-
ing figure shows (a) (selected) maximum DI channel (b)
(dropped) minimum DI channel of the 1st layer in LeNet-5.
By naked eyes, the former clearly yields robustified pat-
terns of the MNIST 0-9 digits. Note that low DI nodes tend
to represent overtraining nodes; consequently, drop low DI
nodes/channels may actually enhance generalization perfor-
mance. In short, DI is a promising metric for structural
training.

(a) maximum DI (0.625) channel (b) minimum DI (0.501) channel
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Table 1. Comparison with compression benchmarks

4. SUPERVISED DEEP COMPRESSION:
EXPERIMENTAL RESULTS

We conduct experiments on MNIST [18]/CIFAR-10 [19]
datasets consisting of images of 10-class and 60,000/50,000
training samples, with 10,000 testing samples. In our study,
the (supervised) deep compression seems to outperform all
other pruning methods, as clearly evidenced by Table 1 and
Fig. 2. (All our results, including final compressed models,
have been uploaded to our OStrim-github-site [20].)
MINIST Dataset: We gain around 20x in speedup on
Lenet-300. On Lenet-5, we achieve 20x in speedup and 100x
in storage reduction, cf. Fig.2(a-b).
CIFAR-10 Dataset: DILoss-based OStrim is effective
on ResNet56, VGG16, and Lenet using CIFAR100 and CI-
FAR10 datasets. We improve the accuracy by around 0.8%
with nearly 5x in speedup on VGG16 as compared with the
baseline, cf. Fig.2(c). Even for the more compact and ad-
vanced structure like ResNet56, OStrim yields an accuracy
improvement of 0.8% with 3x in speedup compared with the
baseline, cf. Fig.2(d).
CIFAR-100 Dataset: Fig. 2(e): On Mobilenet, a reduction
of around 2.5x in speedup is observed while improving ac-
curacy by from 73.68% to 75.61%. On ResNet164, we gain
2.5x in speedup. Finally, on VGG19, OStrim achieve around
2.5x in speedup while improving the accuracy by from 72.4%
to 73.84%.
Start OStrim with Oversized Nets: Note that the update
learning tends to converge rapidly due to the good initial
condition we use for fine tuning the net. To verify the vi-
tal importance of initial condition, we purposely retrain the
optimally-reduced LeNet-5, but using randomized initial con-
dition. Not surprisingly, it yields an accuracy of 97.28%, far
poorer than 99.35% by starting OStrim-DILoss with the base.
It has been reported by some optimization theoreticians that
a somewhat oversized (fat) network may bring about desir-
able numerical convergence [21]. As evidenced by Fig.2(f)

(a) MNIST: Lenet5 speedup (b) MNIST: Lenet5 storage

(c) CIFAR10: VGG16 speedup (d) CIFAR10: Resnet56 speedup

(e) CIFAR100: speedup (f) Starting with oversized net

Fig. 2. The broad range of reduction (100x) implies a very
comprehensive coverage of NP structural learning, i.e. cover-
ing a lot of potential structural options.

starting the NP iteration with a fat DLN, we have a higher de-
sign and flexibility with a broader range of size-performance
tradeoff/optimization.
Bootstrapping: Note that DILoss NP iteration and Zhuang’s
method [2] are both based on discriminant analysis. Since
they are complementary, it is natural to further improve per-
formance by bootstrapping each other. As shown in Table.1,
we can further reduce both storages and FLOPs somewhat by
applying several rounds of bootstrapping.
Advantage of DILoss in Redundancy Mitigation: On
MNIST Lenet300 experiment, we note that OStrim-DILoss
outperforms OStrim-FDR. This may be attributed to the fact
that DI can better account for inter-feature redundancy than
FDR. Indeed, the nodes selected via DI tend to be less cor-
related than those selected by FDR, as evidenced by the
following Pearson-correlation analysis [22]:

(a) OStrim-FDR (b) OStrim-DI

8060



Savings on Input Features: Note that OStrim may also
be viewed as a tool for input feature reduction. It can reduce
Lenet300’s (MLP{784-300-100-10}) into MLP{314− 60−
20 − 10} while improving accuracy by .1%, cf. Table 1. It
means that merely 40% of informative features selected by
OStrim-DILoss can well preserve the useful information in
the original MNIST images. From the discriminant analy-
sis’ perspective, such feature reduction represents a kind of
lossless compression. For certain sensor array applications, it
may be applied to save hardware/human costs unnecessarily
wasted on raw-data acquisitions.

5. ALGORITHMS/ARCHITECTURE CO-DESIGN

The hardware costs estimated/reported above are based on the
following analysis. Note that a full characterization of LeNet-
5 (containing CNN and MLP layers) is:
{282 → [f1 n1 m1 µ1]→ [f2 n2 m2 µ2]− n3 − n4 − n5}

where we denote fi × fi as the filter kernel size of the i-th
CNN layer; ni as the channel number. Here, WLOG, we shall
fix (1) the ratio of the sizes of feature-maps before/after sub-
sampling to (mi ×mi)/(µi × µi) = 4 and (2) mi = µi−1 −
fi+1 since we retain only the completely filtered portion after
convolution. This leads to a simplified characterization:

{[f1 n1]→ [f2 n2]− n3 − n4 − n5}
For LeNet-5, we have: {[5 20]→ [5 50]− 800− 500− 10 }.
Denote the number of parameters and FLOPs in layer i as pi
and FLOPi, then the total storage P and total FLOPs are:

P =

L∑
i=1

pi FLOP =

L∑
i=1

FLOPi (6)

where (1) for MLP layers:

pi = ni−1 × ni FLOPi = 2× ni−1 × ni
and (2) for ConvNet layers:

pi = ni−1×ni×f2i FLOPi = 2×ni−1×ni×f2i ×m2
i

The above formula may be useful for hardware optimiza-
tion strategy: It can be analytically be shown that, relatively
speaking, we can achieve more FLOP saving by trimming
ConvNet and more parameter saving by reducing MLP.
Parallel Architectures: Note that hardware implementa-
tion for dense networks (as obtained by OStrim) is simpler
than sparse network (as in Han’s). First, dense nets may
enjoy the speed/power advantages by cleverly harnessing
caches as memory units [23]. In addition, dense nets can
fully take advantage of their smooth dataflow to facilitate
parallel/pipelined processing [16].

6. DI-BASED DEEP QUANTIZATION
When applications shift from high accuracy to low power, we
may want to further quantize hidden nodes and net on the OS-
trimmed net. We applied 16-bit fixed point OStrim to Lenet-
300-100 on MNIST dataset, and obtained the same accuracy
of 98.42%, cf. OStrim-github-site [20].

Fig. 3. (a) The configuration of MINDnet. (b) Accuracies.
• By cherry-picking a small fraction of the highest FDR

nodes, we can achieve 100x saving in storage from
baseline while yielding an accuracy of 94.42%

• By reducing 2/3 of the weaker nodes from 16-bit to 8-
bit, we yield 150x saving with accuracy = 94.22%

Note that, in the worst case, the quantization-error-variance is
amplified by the spectrum norm of the weight matrix when-
ever it traverses across any layer. We conclude that quanti-
zation on lower layers tends to induce greater side-effect. To
verify this, we compare three reduced nets (all with 100x ac-
celeration): 190-13-10-10; 110-20-16-10; and 75-26-20-10
and observe the accuracies dropping from 94.42%, 93.21%,
to 89.85%, pursuant to what theoretically predicted.

7. DI-BASED NETWORK GROWING: MINDNET
In additional to structural learning, DI-based IOM may also
be utilized to train a DI-boosting structure. Figure 3(a) shows
a general configuration of MINDnet (Monotonic INcreasing
Discriminant Network).
7.1. Fisher Weights for Inheritance Nodes
MINDnet relies on the inheriting Fisher nodes, (shown as the
upper nodes in Figure 3), W = S̄−1∆, derived by the OS
training strategy. (The full-space DI can be retained by the
Fisher projection matrix W iff it fully spans the (L − 1)-
dimensional subspace of SB.) Note that the discriminant in-
formation of any hidden layer can be fully transferred to the
next layer via a small number (≤ L) of Fisher-nodes. By fur-
ther augmenting the Fisher nodes with the traditional hidden-
nodes (shown as the lower-nodes in Figure 3), it guarantees
that the DI will monotonically increase from layer to layer.
7.2. MINDnets
MINDnet may be constructed layer-by-layer (Sequential
MINDnet) or simultaneously (Parallel MINDnet). MIND-
net has its own BPOS learning, involving a recursive loop
with two updating sub-steps:

(i) For all layers, compute the fisher nodes of the next layer :
S̄−1∆ (cf. Eqs. [1 - 3]).
(ii) Apply the external BP learning across all hidden layers.

In Figure 3(b), we compare sequential MINDnet with MLP
for CIFAR-10 using 64-dimensional input vectors pre-extracted
by ResNet56. The accuracy improves as we sequentially
grow the MINDnet layer by layer. Note that MINDnet gives
a slightly better prediction accuracy (93.1%) than the original
ResNet56 (92.78%). Using multi-kernel Fisher nodes [24],
we can further arrive at an accuracy of 93.28%.
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