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ABSTRACT

Back-propagation (BP) is now a classic learning paradigm
whose source of supervision is exclusively from the external
(input/output) nodes. Consequently, BP is easily vulner-
able to curse-of-depth in (very) Deep Learning Networks
(DLNs). This prompts us to advocate Internal Neuron’s
Learnablility (INL) with (1)internal teacher labels (ITL); and
(2)internal optimization metrics (IOM) for evaluating hidden
layers/nodes. Conceptually, INL is a step beyond the notion
of Internal Neuron’s Explainablility (INE), championed by
DARPA’s XAl (or AI3.0). Practically, INL facilitates a struc-
ture/parameter NP-iterative learning for (supervised) deep
compression/quantization: simultaneously trimming hidden
nodes and raising accuracy. Pursuant to our simulations, the
NP-iteration appears to outperform several prominent pruning
methods in the literature.

Index Terms— Internal Learning, Internal Optimiza-
tion Metrics (IOM), structural-parameter learning, BPOS
NP-iteratom, (supervised) deep compression/quantization.

1. INTRODUCTION

By viewing the DLN as a black box, cf. Figures 1(a,b), BP
is an external learning paradigm. Traditionally, BP is only
used for parameter learning of DLNs, leaving the task of find-
ing optimal structure to trial and error. To rectify this, there
are recently novel approaches to structural tuning via external
regulation, e.g. Louizos et al. [1] and Zhuang et al. [2].

2. SUPERVISED NET LEARNING VIA INTERNAL
OPTIMIZATION METRICS (IOM)

BP learning on deep nets may suffer from vanishing/exploding
gradients of an external optimization metric(EOM) [3]. This
in turn induces the curse of depth problem [3-5]. To mitigate
this problem, we propose an internal learning paradigm, al-
lowing the hidden nodes to be directly trained. This requires
that teacher labels to be sent to all the hidden nodes, just like
the “Trojan-horses”. This leads to an Omnipresent Supervi-
sion(OS) internal learning strategy, where internal teacher
labels are ubiquitously accessible to all hidden nodes, as
exemplified by Figures 1(a,c).
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Fig. 1. For classification problem, the teacher labels can

be metaphorically hidden in “Trojan-horses™ and transported
(along with the data) from the input layer to all hidden nodes.
(a) The original label, say B, is being sent to all hidden nodes;
(b) External teacher only; (c) Possible internal teacher labels
ITLs are: granularity-adaptive (class or super-class), layer-
adaptive, or end-user-adaptive to facilitate INE in XAl

Internal learning applies only to classification problems
[6], where the training dataset consists of a set of pairs de-
noted as [X, Y] = [x1,41], [X2,92],- .., [Xn,yn] where a
teacher value, y,, is assigned to each training vector x;, for
t=1,---,N. Let L denote the number of different classes
with Ny denoting the number of training vectors associated
with the [-th class, [ = 1,--- , L, and teacher values are dis-
crete labels, i.e. y; € class labels.

Denote the “center-adjusted” scatter matrix as S =
X X7 which can be divided into two parts [7]:

S=Sp+Sw (1)
where within-class/between-class scatter matrix Sy, /S g are:
L N
£ l
Sw o= Y > - ') -7, @)
=1 j=1
L
Sz = Y Ne[d,-wl[i,-#]"=aA" 3
(=1

where A € RM*L represents the centroids matrix.
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IOM: Discriminant Information (DI)

Internal learning requires a clear definition of IOM, i.e. an in-
ternal metric to facilitate the local learning/optimization pro-
cess in each hidden node/layer. To this end, we note that
maximizing SNR involves a ratio between Sp versus Sy
which, thanks to Eq. [1], is equivalent to maximizing the
ratio between Sp versus S. The latter leads to a new met-
ric named Discriminant Information (DI), stemming from a
combination of Fisher’s discriminant analysis and Shannon’s
mutual information [7-10]. For assessing the goodness of
space/subspace/node of any hidden layer, we propose:

DI(W) = tr ((W'SW + pI] ' [WTS; W]) 4)

(The ridge p is meant to safeguard numerical inversion of S.)
To assess the IOM of the full space of a layer, we set W = I:

DI =DI(I) = tr ([S+ pI] 'Sp) 5)

For (supervised) deep compression, we make a good use of:
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where W, .. /W, keeps/drops only the i-th node/channel.

For pruning nodes/channels in MLP/ConvNet, we adopt:

e Fisher Discriminant Ratio (FDR):

FDR = DI(Wj,..,) is the value of the i-th node/channel.

o Dispensability of a node/channel: DI-Loss:
DILoss = DI(I) — DI(W;,, ) is the remaining value
of the layer after removing the i-th node/channel. This
reflects the dispensability of the i-th node/channel.
Remark: For pruning channels in ConvNet, we use a similar
DI-metric except that Wy, /W, must be first converted
into a block-matrix form: W;, . Q@ I/ W;, & I.
3. NP ITERATIVE NET PRUNING METHODS

We propose an (EM-style) NP iterative learning algorithm,
where N stands for Net and P for Parameter, pictorially illus-
trated below:

Net Updating Space
8(W,Net')

Parameter 7 \J \
Updating Space L4 \
8(W",Net") 2

a(W’,Net') .
a(W,Net)

3.1. Unsupervised NP-Iterative Pruning of Links

Lacking a (supervised) IOM, we have to do with an unsuper-
vised selection metric in implementing the N-phase of NP-
iteration. Intuitively, links (weights) with lowest-magnitude

3.2. BPOS Iteration: Seamless Integration of EOM/IOM

Our supervised BPOS NP-method involves both (1) BP
parameter-learning (based on EOM) and (2) OS net-learning
(based on IOM), so we must strive for an acceptable con-
sistency between EOM and IOM. Assuming Gaussian dis-
tribution and one-hot-encoding of the teacher values, LSE
and DI metrics are essentially equivalent under the balanced
scenarios(i.e. equal size per class) [10, 13].

For the unbalanced scenarios(i.e. with unequal sizes), the
same equivalence can be preserved by adopting a renormalized-
one-hot-encoding, where the teacher values will replaced by
\/ﬁfl instead of “1”. Such encoding assures consistency
between EOM and IOM, fostering OStrim’s BPOS learning,
where the external BP learning [14—16] and the internal OS
learning [17] are both employed.

3.3. OStrim: Supervised NP-Iterative Pruning

As shown in Algorithm 1, OStrim trims unwanted nodes, in-
stead of links, by iteratively repeating : (i) Net Updating to
remove the low-score hidden neurons based on the supervised
IOM and (ii) Parameter Updating via external BP learning.
(The iterations continue until the accuracy improvement sat-
urates or starts to downgrade.)

Algorithm 1: NP Iterative Pruning Method

Input : Original Network Net, Pruning Ratio «
Output: Pruned Network Net,
1 Out-source or BP-train a base-net Net, let Net, < Net
2 while Accuracy > Threshold do
3 Net Updating: Based on the IOM score, e.g. FDR or DILoss,
drop a small fraction of lowest-scored nodes/channels.
4 Parameter Updating: Based on the EOM score, apply BP to
externally train Net’ into Net”, let Net, < Net”
5 end

6 return Netyp

3.4. OStrim is Conducive to Implicit Regularization

To highlight the critical roles played by DI, the follow-
ing figure shows (a) (selected) maximum DI channel (b)
(dropped) minimum DI channel of the Ist layer in LeNet-5.
By naked eyes, the former clearly yields robustified pat-
terns of the MNIST 0-9 digits. Note that low DI nodes tend
to represent overtraining nodes; consequently, drop low DI
nodes/channels may actually enhance generalization perfor-
mance. In short, DI is a promising metric for structural
training.

are good candidates to be removed. This is the approach (a) maximum DI (0.625) channel (b) minimum DI (0.501) channel

adopted by Han et al. and Iandola et al. [11, 12].
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Table 1. Comparison with compression benchmarks

Task Models Accuracy % FLOPs Params
EARIOD Mobilenet-v2 (baseline) 73.68 1.8x10° 2.4x10°
Mobilenet-v2 (DILoss) 75.61 7.57x107(42.06%) 1.07x10°(44.58%)
VGG-I6 (baseline) 9325 6.26x10° 1.5x107
VGG-16 (Li et al., 2017) 93.41 4.12x10°(65.81%) 5.4x105(36%)
VGG-16 (FDR) 93.61 1.35x10°(21.4%) 7.1x10°(4.7%)
VGG-16 (DILoss) 94.07 1.28x10°(20.45%) 5.32x105(3.55%)
ResNet-56 (baseline) 93.04 2.5x108 8.5x10°
CIFAR-10 ResNet-56 (Li et al., 2017) 93.06 1.81x10°(72.4%) 7.3x10°(85.88%)
ResNet-56 (Yu et al., 2018) 93.01 1.41x108(56.4%) 4.94x105(58.12%)
ResNet-56 (He et al., 2017) 91.9 1.25x108(50%) -
ResNet-56 (Zhuang et al., 2018) 93.49 1.25%10%(50.25%) 4.3X10%(50.76%)
ResNet-56 (DILoss) 93.84 8.38x107(33.52%) 3.12x105(35.52%)
ResNet-56 (bootstrap:DILoss+Zhuang) 9384 7.58x107(30.32%)  2.81x10°(33.05%)
Lenet-5 (baseline) 992 459x10° 4.3x10°
Lenet-5 (Han et al., 2015) 99.23 83x105(18.1%) 3.6x104(8.4%)
Lenet-5 (Louzois et al., 2018) 99 7.85x105(17.1%) 1.22x10%(2.83%)
Lenet-5 (FDR) 99.33 2.6X10°(5.74%) 4.9x10%(1.1%)
MNIST Lenet-5 (DILoss) 99.35 2.46x105(536%) 3.86x103(0.89%)
Lenet-300 (baseline) 9836 - 2.7x10°
Lenet-300 (Han et al., 2015) 98.41 2.24x10%(8.3%)
Lenet-300 (Louzois et al., 2018) 982 2.7x10*(10%)
Lenet-300-100 (FDR) 98.42 2.3x10%(8.5%)
Lenet-300 (DILoss) 98.46 1.63x10%(6.04%)

4. SUPERVISED DEEP COMPRESSION:
EXPERIMENTAL RESULTS

We conduct experiments on MNIST [18]/CIFAR-10 [19]
datasets consisting of images of 10-class and 60,000/50,000
training samples, with 10,000 testing samples. In our study,
the (supervised) deep compression seems to outperform all
other pruning methods, as clearly evidenced by Table 1 and
Fig. 2. (All our results, including final compressed models,
have been uploaded to our OStrim-github-site [20].)
MINIST Dataset: =~ We gain around 20x in speedup on
Lenet-300. On Lenet-5, we achieve 20x in speedup and 100x
in storage reduction, cf. Fig.2(a-b).

CIFAR-10 Dataset: DILoss-based OStrim is effective
on ResNet56, VGG16, and Lenet using CIFAR100 and CI-
FAR10 datasets. We improve the accuracy by around 0.8%
with nearly 5x in speedup on VGG16 as compared with the
baseline, cf. Fig.2(c). Even for the more compact and ad-
vanced structure like ResNet56, OStrim yields an accuracy
improvement of 0.8% with 3x in speedup compared with the
baseline, cf. Fig.2(d).

CIFAR-100 Dataset: Fig. 2(e): On Mobilenet, a reduction
of around 2.5x in speedup is observed while improving ac-
curacy by from 73.68% to 75.61%. On ResNetl164, we gain
2.5x in speedup. Finally, on VGG19, OStrim achieve around
2.5x in speedup while improving the accuracy by from 72.4%
to 73.84%.

Start OStrim with Oversized Nets: Note that the update
learning tends to converge rapidly due to the good initial
condition we use for fine tuning the net. To verify the vi-
tal importance of initial condition, we purposely retrain the
optimally-reduced LeNet-5, but using randomized initial con-
dition. Not surprisingly, it yields an accuracy of 97.28%, far
poorer than 99.35% by starting OStrim-DILoss with the base.
It has been reported by some optimization theoreticians that
a somewhat oversized (fat) network may bring about desir-
able numerical convergence [21]. As evidenced by Fig.2(f)
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Fig. 2. The broad range of reduction (100x) implies a very
comprehensive coverage of NP structural learning, i.e. cover-
ing a lot of potential structural options.

starting the NP iteration with a fat DLN, we have a higher de-
sign and flexibility with a broader range of size-performance
tradeoff/optimization.

Bootstrapping: Note that DILoss NP iteration and Zhuang’s
method [2] are both based on discriminant analysis. Since
they are complementary, it is natural to further improve per-
formance by bootstrapping each other. As shown in Table.1,
we can further reduce both storages and FLOPs somewhat by
applying several rounds of bootstrapping.

Advantage of DILoss in Redundancy Mitigation: On
MNIST Lenet300 experiment, we note that OStrim-DILoss
outperforms OStrim-FDR. This may be attributed to the fact
that DI can better account for inter-feature redundancy than
FDR. Indeed, the nodes selected via DI tend to be less cor-
related than those selected by FDR, as evidenced by the
following Pearson-correlation analysis [22]:

0 p 0 £

0 20 B 4 50

(a) OStrim-FDR (b) OStrim-DI
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Savings on Input Features: Note that OStrim may also
be viewed as a tool for input feature reduction. It can reduce
Lenet300’s (MLP{784-300-100-10}) into M LP{314 — 60 —
20 — 10} while improving accuracy by .1%, cf. Table 1. It
means that merely 40% of informative features selected by
OStrim-DILoss can well preserve the useful information in
the original MNIST images. From the discriminant analy-
sis’ perspective, such feature reduction represents a kind of
lossless compression. For certain sensor array applications, it
may be applied to save hardware/human costs unnecessarily
wasted on raw-data acquisitions.
5. ALGORITHMS/ARCHITECTURE CO-DESIGN

The hardware costs estimated/reported above are based on the
following analysis. Note that a full characterization of LeNet-
5 (containing CNN and MLP layers) is:

{28% = [f1 n1 my ] = [f2 na mao po] — ng — ny — ns}
where we denote f; x f; as the filter kernel size of the i-th
CNN layer; n; as the channel number. Here, WLOG, we shall
fix (1) the ratio of the sizes of feature-maps before/after sub-
sampling to (m; x m;)/(u; X p;) =4 and 2) m; = p—1 —
fi+1 since we retain only the completely filtered portion after
convolution. This leads to a simplified characterization:

{[f1 m] = [f2 n2] = ng — g — s}
For LeNet-5, we have: {[5 20] — [5 50] — 800 — 500 — 10 }.
Denote the number of parameters and FLOPs in layer 7 as p;
and F'LO P, then the total storage P and total FLOPs are:

L
P:Z bi
i=1

where (1) for MLP layers:

L
FLOP =) FLOP, (6)
=1

Pi=MNi—1 XNy FLOPZ-ZQXni,anZ-

and (2) for ConvNet layers:

pi:ni_lxnixff FLOEZQXTLi_lan‘XfEme

The above formula may be useful for hardware optimiza-
tion strategy: It can be analytically be shown that, relatively
speaking, we can achieve more FLOP saving by trimming
ConvNet and more parameter saving by reducing MLP.
Parallel Architectures:  Note that hardware implementa-
tion for dense networks (as obtained by OStrim) is simpler
than sparse network (as in Han’s). First, dense nets may
enjoy the speed/power advantages by cleverly harnessing
caches as memory units [23]. In addition, dense nets can
fully take advantage of their smooth dataflow to facilitate
parallel/pipelined processing [16].
6. DI-BASED DEEP QUANTIZATION

When applications shift from high accuracy to low power, we
may want to further quantize hidden nodes and net on the OS-
trimmed net. We applied 16-bit fixed point OStrim to Lenet-
300-100 on MNIST dataset, and obtained the same accuracy
of 98.42%, cf. OStrim-github-site [20].

performance of MIND-net versus MLP
0934
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0928
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dayer
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Fig. 3. (a) The configuration of MINDnet. (b) Accuracies.

e By cherry-picking a small fraction of the highest FDR
nodes, we can achieve 100x saving in storage from
baseline while yielding an accuracy of 94.42%

e By reducing 2/3 of the weaker nodes from 16-bit to 8-
bit, we yield 150x saving with accuracy = 94.22%

Note that, in the worst case, the quantization-error-variance is
amplified by the spectrum norm of the weight matrix when-
ever it traverses across any layer. We conclude that quanti-
zation on lower layers tends to induce greater side-effect. To
verify this, we compare three reduced nets (all with 100x ac-
celeration): 190-13-10-10; 110-20-16-10; and 75-26-20-10
and observe the accuracies dropping from 94.42%, 93.21%,
to 89.85%, pursuant to what theoretically predicted.

7. DI-BASED NETWORK GROWING: MINDNET
In additional to structural learning, DI-based IOM may also
be utilized to train a DI-boosting structure. Figure 3(a) shows
a general configuration of MINDnet (Monotonic INcreasing
Discriminant Network).

7.1. Fisher Weights for Inheritance Nodes

MINDnet relies on the inheriting Fisher nodes, (shown as the
upper nodes in Figure 3), W = S~!A, derived by the OS
training strategy. (The full-space DI can be retained by the
Fisher projection matrix W iff it fully spans the (L — 1)-
dimensional subspace of Sg.) Note that the discriminant in-
formation of any hidden layer can be fully transferred to the
next layer via a small number (< L) of Fisher-nodes. By fur-
ther augmenting the Fisher nodes with the traditional hidden-
nodes (shown as the lower-nodes in Figure 3), it guarantees

that the DI will monotonically increase from layer to layer.
7.2. MINDnets

MINDnet may be constructed layer-by-layer (Sequential
MINDnet) or simultaneously (Parallel MINDnet). MIND-
net has its own BPOS learning, involving a recursive loop

with two updating sub-steps:
(i) For all layers, compute the fisher nodes of the next layer :

S—1A (cf. Egs. [1 - 3].
(ii) Apply the external BP learning across all hidden layers.
In Figure 3(b), we compare sequential MINDnet with MLP

for CIFAR-10 using 64-dimensional input vectors pre-extracted
by ResNet56. The accuracy improves as we sequentially
grow the MINDnet layer by layer. Note that MINDnet gives
a slightly better prediction accuracy (93.1%) than the original
ResNet56 (92.78%). Using multi-kernel Fisher nodes [24],
we can further arrive at an accuracy of 93.28%.
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