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Abstract- Due to the increase of sensitive loads on the mains 

power grid, measurement and monitoring of the power quality 
(PQ) have become an important factor for both consumers and 
operators. As is well-known, PQ problems occur in a very short 
time period with specific characteristics.  In transmission or 
distribution systems, power quality data are collected from 
monitoring devices such as digital fault recorders, power quality 
and dynamic system monitors, etc. The recorded data has to be 
analysed in order to understand system anomalies. These 
anomalies may be due to sources of broadband noise. In this 
study, we employ broadband subspace decomposition, using 
polynomial eigenvalue decomposition, to detect these anomalies. 
Results demonstrate that this method may be considered as a 
new and effective tool for measurement and monitoring of PQ 
problems. 

 Index Terms—power quality, power system harmonics, PQ 
monitoring, power distribution, broadband subspace estimation, 
polynomial EVD, PEVD. 

I. INTRODUCTION 
 Accurate detection and subsequent eradication of faulty 

loads connected to the mains grid has received increased 
attention over recent years. Faulty loads give rise to spurious, 
intermittent, voltage anomalies on the grid lines. Voltage sags 
and swells lead to interruption of sensitive loads employed in 
industry which in turn leads to the significant increase in costs 
due to loss of production [1],[2]. The analysis of power quality 
anomalies is a major concern for power systems engineers and 
designers. Therefore, various methods have been developed 
to protect equipment and to identify the cause of disturbances. 
Some of these methods are based on, e.g., the fast Fourier 
transform (FFT), Kalman filters (KF), decision trees (DTs), 
fuzzy logic (FL) and neural networks (NNs). One of the most 
popular methods, in the past, has been wavelet transforms [3]. 
Reviews of methodologies developed for power quality 
analysis and power disturbance classification can be found in 
[4],[5]. The standards refer to methods in the frequency 
domain for providing a tolerance in the algorithms, such as 
the Goertzel algorithm, chirp z-transform method, Welch 
algorithm, zoom FFT, among others, which have all been 
widely used for electrical-parameter monitoring [6],[7]. 

 However, there are still a number of problems that have 
not been adequately resolved thus far. A major problem is that 
some of the voltage anomalies disrupting the grid system 
occupy a relatively wide band of frequencies, and so should 
be treated as sources of broadband interference. These types 
of signal cannot be adequately related in terms of simple phase 
and amplitude factors across the three-phase utility system. 
Instead, actual time-delays are required to describe the 
relationship between the phases. One way of adequately 

detecting these anomalies is by decorrelating the three phases, 
which can be performed using matrix factorisation, such as 
eigenvalue decomposition (EVD). However, using only 
instantaneous decorrelation would not capture the true 
relationship between these (broadband) signal phases. Hence, 
decorrelation over a number of relative time delays, namely 
strong decorrelation [8], would be more suitable. A matrix of 
suitably chosen finite impulse response (FIR) filters, or a 
polynomial matrix [8]-[10], can be applied to the three phase 
grid voltages to produce strongly decorrelated waveforms. 
The required polynomial matrix is obtained via a polynomial 
matrix EVD (PEVD), which has received growing interest 
recently [10]-[14]. The PEVD has been used to perform 
convolutive blind source separation and broadband 
interference rejection in [15]-[18]. In [15]-[17], the PEVD 
was used to estimate the broadband noise (plus interference) 
subspace, which then allowed for suppression of the 
contaminating signals. The second-order sequential best 
rotation (SBR2) algorithm [10] and its coding-gain variant, 
SBR2C [11], were used in these works to estimate the PEVD.  

In this paper, we proposed a novel method of detecting 
voltage anomalies in the grid lines, which is based on 
broadband subspace decomposition. The SBR2C algorithm in 
[11] is used to estimate the broadband subspace 
corresponding to the grid anomalies. Our method eliminates 
the need for pre-processing, such as band-pass filtering, 
required by most prior-art techniques. 

II. PROBLEM DEFINITION 
In many cases, consideration of only the instantaneous 

covariance matrix in characterizing the statistical relationship 
between the grid-voltage waveforms is not sufficient. This is 
because the loads that are connected to the grid may corrupt 
the grid over a significantly large band (broadband) of 
frequencies; that is, the signals due to the voltage anomalies, 
such as sag, swell, etc., may consist of a large number of 
different frequency components. In this case, the broadband 
signals  can no longer be related in terms of just phase 
shifts, since the required phase shift changes with frequency. 
More appropriately, the relationship between these signals 
must involve time delays—and/or fractional delays. To 
adequately describe this relationship a different phase 
correction is required for each frequency components. This 
type of operation can be realized by FIR filters, thus 
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where  is a  matrix of FIR filter coefficients 
, , of order , and  is the original 

three-phase grid voltages. In practice, the FIR-filter matrix is 
unknown. The signal vector  denotes the additive white 
Gaussian noise that is present in the grid lines, which is 
assumed to be independent from . Alternatively, this can 
be expressed using polynomial notation as 
 

 
 
here  is a polynomial (or FIR) mixing 
matrix, or a multi-input, multi-output (MIMO) system, with 
entries  , which reflect the 
frequency-selective nature of the faulty loads attached to the 
grid; ,  and  represent vectors of power series 
with  coefficient vectors comprising the corrupted, 
three-phase and noise terms, respectively; for example, 

. 
Due to the filtering in (1) the broadband signals  will 

be mutually correlated over a number of time lags, i.e. 
strongly correlated. Hence, the second-order statistical 
dependencies between the signals in (1) can be described by 
the sample space-time covariance matrix [9],[10]: 

 

 

 
where  is a discrete lag parameter,  and 

, for  and . Since  contains auto-covariance, 
, and cross-covariance, 

, , functions of , it follows that 
 [12]. Taking the z-transform of (3) gives the 

sample cross-spectral density (CSD) matrix of  
 

 

 
which is a function of the indeterminate variable , and has 
entries . For the types of broadband 
signal considered here, the coherence time is significantly 
small compared to  [10],[17]; therefore, we may assume 
that  is negligibly small for . Note that, assuming 

, an appropriate value for  can be obtained 
experimentally. The non-diagonal CSD matrix is a 
parahermitian matrix, that is, it satisfies the parahermitian 
property: , where  is the 
parahermitian operation, which involves Hermitian 
transposition, denoted by the superscript , and time-reversal, 
represented by . The non-diagonality of the parahermitian 
CSD matrix  in (4) is indicative of strong correlations 
between the signals  in (2). In many applications, 
particularly those involving noise suppression, it is important 
to be able to diagonalize the CSD matrix, which is equivalent 
to imposing strong decorrelation upon the signals from which 

 is derived [11]. This can be achieved by calculating the 
PEVD, or McWhirter decomposition, of , given by [10]: 

 
 

 
where  is a FIR paraunitary polynomial matrix, which 
satisfies: , where  is the 

 identity matrix. The polynomial matrix  may be 
viewed as an extension of the lossless filter to MIMO systems, 
the columns of which are the polynomial eigenvectors of 

; and  comprises 
the estimated polynomial eigenvalues, , of  – one 
auto-covariance function for each phase of the grid. Consider 
application of the FIR paraunitary matrix , from the 
factorization in (5), to the grid voltages, thus 
 

 
 
The transformed signals  
satisfy strong decorrelation, and are related to the diagonal 
matrix of polynomial eigenvalues in (5) by:  
 

 
 
where ,  and  is the 
expectation operator. Evaluation of the diagonal entries 

 at  reveals the power spectral density (PSD) of 
, denoted by . It is well-known that  

satisfy the spectral majorization property [8],[11],[19]: 
 

 
 

, for all normalized frequencies . The spectral 
majorization property is analogous to the eigenvalue ordering 
that is performed by an ordered EVD [15]-[17]; and is 
desirable in a number of applications, including, in particular, 
broadband interference cancellation [17]. As explained in the 
next section, this application is highly relevant to the problem 
of detecting the voltage anomalies embedded in the grid 
voltage waveforms; where both strong decorrelation and 
spectral majorization act, in effect, to unravel components of 
the broadband voltage anomalies from the grid voltages. 

The aim of this work, ultimately, is to detect the voltage 
anomalies on the grid lines. One way of achieving this is 
through estimates of the broadband noise (plus interference) 
subspace, which can be obtained from the EVD of  – 
discussed in Section III. The onset of each voltage anomaly 
can then be detected using estimates of the voltage anomalies 
derived from the noise subspace, as described in Sections III. 

III. PROPOSED METHOD 
The spectral majorization property of PEVD algorithms, 

such as SBR2 [10],[19] and SMD [13], enables their effective 
use in broadband subspace decomposition, as demonstrated in 
[15]-[17]. This plays an important role in the proposed 
approach to detecting voltage anomalies. Our approach can be 
summarized by the following two steps: 

1. Use broadband subspace decomposition via PEVD 
(SBR2C) to estimate the voltage anomalies. 
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2. Use peak-detection to identify the onset of the 
voltage anomalies. 

A block diagram of our two-step approach is shown in Fig. 1. 
The approximate PEVD in (5) can be used to extend 

principal component analysis (PCA) to polynomial matrices, 
or to broadband signals, namely broadband PCA (BPCA) 
[15]-[17]. Hence, the transformation in (6) can be viewed as 
the analysis stage of BPCA, where  represent the 
polynomial principal components. This allows extension of 
the concept of subspace decomposition, or low-rank 
modelling, to broadband signals, i.e. broadband subspace 
decomposition [17]. Then the polynomial principal 
components, which are orthogonal, can be partitioned as: 

 
 

 
where  defines an estimate of the signal (plus noise) 
subspace and  represents the broadband interference and 
noise subspace. For our application, the former would 
typically be related to the actual three-phase voltages. This is 
because the three-phase waveforms are highly correlated with 
one another—more so than the voltage anomalies would be in 
general—and so a PEVD algorithm would tend to strongly 
decorrelate these signals from the noise and interference 
signals. The noise subspace, on the other hand, would be 
associated with the voltage anomalies (and noise), since they 
would typically have weaker correlations than the more 
prominent three-phase waveforms. For a thorough treatment 
of broadband subspace estimation in the context of broadband 
blind source separation the reader is referred to [17],[18]. 

Assume that the spectra of the voltage anomalies are 
different from that of the three-phase voltage waveforms. 
Then estimates of either of the two signals can be obtained by 
projecting the grid measurements  onto the appropriate 
broadband subspace. In particular, estimates of the voltage 
anomalies can be obtained by an orthonormal projection of 

 onto the noise subspace, represented by . This can 
be achieved using the PEVD-designed paraunitary matrix 

 in a reconstruction or synthesis stage [16],[17]: 
 

 
 
where  is a  matrix that is designed to block principal 
components related to the pure three-phase signals and 

 contains estimates of the 
voltage anomalies. Equation (10), as depicted in the 
highlighted box of Fig. 1, can be viewed as a method for 
achieving second-order, broadband, blind source separation. 
However, it should be noted that  are not unmixed 
signals, in the conventional sense of compensating for the 
mixing matrix  in (1). The procedure outlined here 
constitutes broadband subspace decomposition.  

The blocking matrix  takes the form of a null matrix with 
the exception of strategically placed ‘1’s on its diagonals, the 
locations of which correspond to  in . The correct 
choice of  depends on our assumptions about the rank of the  

 
Fig. 1 Block diagram representation of the proposed 
approach, where the system blocks outlined by the dotted box 
constitute broadband subspace decomposition. 

problem, or the signal-subspace dimension. To estimate the 
subspace dimension we look at the PSDs of the polynomial 
eigenvalues, i.e. . Due to the spectral majorisation 
property of (8), an iterative PEVD algorithm, such as SBR2C, 
will tend to compact the most strongly correlated (pure three-
phase) signal-related energies into the first few diagonal 
elements of  in (5) [11],[19]. With this assumption in 
mind, the following routine can be used to make noise-
subspace identification an adaptive process: 

1. If , where 
, for all , then the noise subspace 

dimension can be described by the polynomial 
principal component  

2. If , for all , then 
the noise subspace dimension can be described by 
the set of polynomial principal components 

. 

An alternative approach would be to make the following 
assumption. Since , for the grid system, has only three 
diagonal elements, it is reasonable to expect  and 

 to be dominant (powerful) diagonal elements, which 
would be energy related to the pure three-phase signals. The 
weakest diagonal element, i.e. , would most likely be 
related to the voltage anomalies. Assuming this to be true, it 
is then reasonable to construct  such that it blocks the first 
two components of , i.e.  and . This can be 
achieved with the following diagonal blocking matrix: 
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IV.  EXPERIMENTAL RESULTS 
To demonstrate the performance of the proposed PQ 

detection method, we present results from real-time 
experimentation. In order to observe the performance in a real 
time environment, the proposed PEVD-based subspace 
projection method has been verified using the OPAL-RT real-
time platform, working under RT-LAB software environment 
with associated tools, as shown in Fig.2. This system has a 
total of 16 analogue inputs/outputs and 32 digital 
inputs/outputs. The system is tested with hardware 
synchronization mode to obtain real-time communications 
between the sensing and control signals.  

The effectiveness of the proposed method at detecting 
voltage sags and swells present on the grid lines has been 
assessed. Figs. 3(a) and 4(a) show the three phases of the grid 
voltage overlaid on top of each other; phases A, B and C are 
denoted by the orange, cyan and purple curves, respectively. 
Fig. 3(a) shows the three-phase voltage sags (from 230 V rms 
to 150 V rms) that occur on the grid voltage. Fig 3 (b) clearly 
shows that the faulty interval is detected virtually 
instantaneously by the proposed algorithm. In Fig 4 (a), we 
show the case where a voltage swell is applied to the grid 
voltages – the swell can be observed on all three phases. From 
Fig 4 (b) we see that the voltage-swell period can be 
determined accurately using our method. The peak detection 
algorithm in [20] was used to obtain these results. 

V. CONCLUSION 
In this paper, a method for the detection of grid anomalies 

has been proposed. Our method has been verified 
experimentally, and the results show that the algorithm detects 
grid anomalies in an effective manner. Such an algorithm 
would enable the processing of measured data from PQ 
monitoring systems, such as digital fault recorders, PQ 
monitoring devices and dynamic system monitors. A further 
advantage of the system is that it allows for rapid 
classification of results. Future work will likely focus on the 
development of the proposed algorithm for (i) the detection of 
harmonic distortions; (ii) integration into a digital signal 
processor for the purpose of controlling power systems 
devices. 
 
 

 
Fig. 2 Real-time laboratory set up with OPAL-RT. 
 

 

 
(a) 

 
(b) 

Fig. 3 Performance of the proposed system under three-
phase voltage sag condition (a) captured results in 

oscilloscope (b) determined faulty interval. 
 
 
    

 
(a) 

 
(b) 

Fig. 4 Performance of the proposed system under three-
phase voltage swell condition (a) captured results in 

oscilloscope (b) determined faulty interval.  
 

   

am
pl

itu
de

de
te

ct
io

ns

time  (sec)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

0.5

1

1.5
-40

-20

0

20

40

am
pl

itu
de

de
te

ct
io

ns

time  (sec)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

0.5

1

1.5

-10

0

10

20

8051



 

REFERENCES 
[1] A. M. Rauf and V. Khadkikar, “An enhanced voltage sag 

compensation scheme for dynamic voltage restorer,” IEEE 
Trans. Ind. Electron., vol. 62, no. 5, pp. 2683-2692, May 2015. 

[2] S. Biricik, and H. Komurcugil, “Optimized sliding mode 
control to maximize existence region for single-phase dynamic 
voltage restorers”.  IEEE Trans. on Industrial Informatics, vol. 
12, pp.1486–1497. 

[3] S. Santoso, E. J. Powers, W. Mack Grady, and P. Hofmann, 
“Power quality assessment via wavelet transform analysis,” 
IEEE Trans. on Power Delivery, vol. 11, pp. 924–930, April 
1996. 

[4] D. Granados-Lieberman, R.J. Romero-Troncoso, R.A. 
Osornio-Rios, A. Garcia-Perez, E. Cabal-Yepez, “Techniques 
and methodologies for power quality analysis and disturbances 
classification in power systems: a review.” IET Gener. 
Transm. Dis., vol. 5, no. 4, pp. 519–529, 2011. 

[5] S. Khokhar, A.A.B.M. Zin, A.S.B. Mokhtar, A.S.B.M. 
Pesaran, “A comprehensive overview on signal processing and 
artificial intelligence techniques applications in classification 
of power quality disturbances”, Renew. Sust. Energ. Rev., vol. 
51, pp.1650–1663, 2015. 

[6] A. Ferrero, M. Lazzaroni and S. Salicone, "A calibration 
procedure for a digital instrument for electric power quality 
measurement," in IEEE Trans. on Instrumentation and 
Measurement, vol. 51, no. 4, pp. 716-722, Aug. 2002. 

[7] O. Poisson, P. Rioual and M. Meunier, “Detection and 
measurement of power quality disturbances using wavelet 
transform,” in IEEE Trans. on Power Delivery, vol. 15, no. 3, 
pp. 1039-1044, July 2000. 

[8] P.P. Vaidyanathan, “Theory of optimal orthonormal subband 
coders”, IEEE Trans. on Signal Process. Vol. 46, pp. 1528–
1543, 1998. 

[9] P.P. Vaidyanathan, Multirate Systems and Filter Banks, 
Prentice Hall, Englewood Cliffs, 1993. 

[10] J.G. McWhirter, P.D. Baxter, T. Cooper, S. Redif, J. Foster, 
“An EVD algorithm for para-Hermitian polynomial matrices”, 
IEEE Trans. on Signal Process. vol. 55, pp. 2158–2169, May 
2007. 

[11] S. Redif, J.G. McWhirter, S. Weiss, “Design of FIR 
paraunitary filter banks for subband coding using a polynomial 
eigenvalue decomposition”, IEEE Trans. on Signal Process., 
vol. 59. pp. 5253–5264, Nov. 2011. 

[12] M. Tohidian, H. Amindavar, A.M. Reza, “A DFT-based 
approximate eigenvalue and singular value decomposition of 
polynomial matrices”, J. Adv. Signal Process., vol. 1, pp. 1–
16, 2013. 

[13] S. Redif, S. Weiss, J.G. McWhirter, “Sequential matrix 
diagonalisation algorithms for polynomial EVD of 
parahermitian matrices”, IEEE Trans. on Signal Process. vol. 
63, pp. 81–89, Jan. 2015. 

[14] S. Weiss, J. Pestana, and I. K. Proudler, “On the existence and 
uniqueness of the eigenvalue decomposition of a parahermitian 
matrix,” Trans. on Signal Process., vol. 66, pp. 2659–2672, 
Mar. 2018. 

[15] S. Redif, J.G. McWhirter, P.D. Baxter, T. Cooper, “Robust 
broadband adaptive beamforming via polynomial 
eigenvalues”, IEEE/MTS OCEANS’06, Boston, MA, Sep. 
2006, pp. 1–6. 

[16] S. Redif, “Fetal electrocardiogram estimation using 
polynomial eigenvalue decomposition, Turk. J. Electr. Eng. 
Comput. Sci., vol. 24, pp. 2483–2497, Aug. 2014. 

[17] S. Redif, S. Weiss, J.G. McWhirter, “Relevance of polynomial 
matrix decompositions to broadband blind signal separation”, 
Signal Process., vol. 134, pp. 76–86, 2017. 

[18] S. Redif, “Convolutive blind signal separation via polynomial 
matrix generalized eigenvalue decomposition,” Electronic 
Letters, vol. 53, pp. 87–89, Jan 2017. 

[19] J.G. McWhirter and Z. Wang, “A novel insight to the SBR2 
algorithm for diagonalising para-hermitian matrices,” in 11th 
IMA Conference on Mathematics in Signal Processing, 
Birmingham, U.K., Dec. 2016, pp. 1–4. 

[20] N. Yoder, “PeakFinder”, 2009, [Online]. Available: 
http://www.mathworks.com/matlabcentral/fileexchange/2550
0-peakfinder [Accessed: Aug. 2018]. 

 

8052


		2019-03-18T10:58:28-0500
	Preflight Ticket Signature




