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ABSTRACT

The Second-order Sequential Best Rotation (SBR2) algorithm, used
for Eigenvalue Decomposition (EVD) on para-Hermitian polyno-
mial matrices typically encountered in wideband signal processing
applications like multichannel Wiener filtering and channel coding,
involves a series of delay and rotation operations to achieve diago-
nalisation. In this paper, we proposed the use of Householder trans-
formations to reduce polynomial matrices to tridiagonal form before
zeroing the dominant element with rotation. Similar to perform-
ing Householder reduction on conventional matrices, our method
enables SBR2 to converge in fewer iterations with smaller order
of polynomial matrix factors because more off-diagonal Frobenius-
norm (F-norm) could be transferred to the main diagonal at every
iteration. A reduction in the number of iterations by 12.35% and
0.1% improvement in reconstruction error is achievable.

Index Terms— Polynomial matrix eigenvalue decomposition,
convolutive mixing, paraunitary lossless systems, strong decorrela-
tion, wideband signal processing.

1. INTRODUCTION

The Eigenvalue Decomposition (EVD) of Hermitian matrices is
widely used in many important signal processing applications such
as subspace decomposition for data compression [1], noise reduc-
tion [2], spectral estimation [3], blind source separation [4] and
adaptive beamforming [5, 6]. The matrix used is usually the mul-
tichannel spatial covariance matrix, computed using the complex
outer product of the instantaneous data vector. This computation
assumes that sources are narrowband, uncorrelated and zero-mean.

When wideband signals are involved, time delays between sen-
sors cannot be simply modelled as phase shifts. Instead, correla-
tion across different sensors and temporal lags need to be consid-
ered giving rise to space-time covariance matrices, usually modelled
as polynomial matrices. This has motivated the development of a
family of Polynomial Matrix Eigenvalue Decomposition (PEVD) al-
gorithms [7–10], based on the Second-order Sequential Best Rota-
tion (SBR2) [11], for wideband signal processing applications like
polynomial MUltiple SIgnal Classification (MUSIC) [12, 13], adap-
tive beamforming [14], multichannel Wiener filtering [15], blind
source separation [16], channel identification [17, 18] and channel
coding [19]. At every iteration, SBR2 searches for the dominant off-
diagonal element and seeks to zero it out using elementary delay and
rotation operations. It exploits the para-Hermitian symmetry and is
akin to Jacobi’s eigenvalue algorithm [20]. Even though the SBR2
has been proven to converge, it tends to take many iterations because
zeroing occurs pairwise during each step and the rotation applied to
other lags may undo previous diagonalisation efforts.

While there were attempts to achieve one-step diagonalisation
for faster convergence using a Householder-like factorisation, no
closed form solution is available [7, 21]. Another approach, the Se-
quential Matrix Diagonalisation (SMD) [10], performs an EVD on
the zero lag plane before applying the same unitary matrices across
all lags to achieve quick convergence at the expense of complexity.

Motivated by the idea of reducing the matrix to condensed form
in [22–25], we now show how to enhance SBR2 by reducing the
zero lag plane to tridiagonal form using elementary reflection before
applying rotation to speed up convergence.

2. REVIEW OF EVD ALGORITHMS

2.1. Conventional Hermitian Matrix

The eigenvalue decomposition of a Hermitian matrix [20], A = AH

where A ∈ CM×M , can be expressed as

A = UΛUH , (1)

where the columns of the unitary matrix, U, contain the orthonormal
eigenvectors with associated real-valued distinct eigenvalues lying
on the diagonal of Λ and [.]H is the Hermitian operator.

In numerical diagonalisation such as the Jacobi method, the uni-
tary matrix, U, can be constructed using a sequence of L unitary
matrices U1,U2, . . . ,UL with each of them satisfying

UlU
H
l = UH

l Ul = I, (2)

where I is the identity matrix. The unitary matrix, Ul, l =
1, 2, . . . , L, can take the form of, for example, a Givens rotation,

G(j,k)(θ, φ) =



Ij−1 0 . . . . . . 0

0 cos θ 0 sin θeiφ
...

... 0 Ik−j−1 0
...

... − sin θe−iφ 0 cos θ
...

0 . . . . . . . . . IM−k


,

(3)
where 0 is the zero matrix and i =

√
−1, designed to zero the off-

diagonal element pair on the j-th and k-th row or column such that

G(j,k)



. . .
...

... . .
.

. . . rjj . . . rjk . . .
...
. . .

...
. . . rkj . . . rkk . . .

. .
. ...

...
. . .


GH

(j,k) =



. . .
...

... . .
.

. . . r′jj . . . 0 . . .
...
. . .

...
. . . 0 . . . r′kk . . .

. .
. ...

...
. . .


,

(4)
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where rmn is the m-th row, n-th column matrix element and [.]′ de-
notes the resulting sub-matrix after multiplications. The values in
(3) satisfying (4) are φ = arg(rjk) and tan 2θ =

2|rjk|
rjj−rkk

. Further-
more, the diagonal elements, r′jj , r

′
kk can be ordered in decreasing

magnitude if θ is computed using the four quadrant inverse tangent
to avoid permutation ambiguity arising from arbitrary ordering.

The Householder reflection matrix Hj , which also satisfies (2),
is designed to zero more than one off-diagonal pair such that

Hj

[
rj,j rH

r Aj+1

]
HH
j =

[
rj,j yH

y A′j+1

]
, (5)

where rH = [rj,j+1, rj,j+2, . . . , rj,M ] ∈ C1×M is the row vector,
yH = [α, 0, . . . , 0] is the target vector, α = ±‖r‖2 exp(iφrj,j+1)

is the first element in yH , φrj,j+1 is the phase angle of rj,j+1. The

Householder matrix is computed using Hj = I − 2uuH

uHu
, where

uH = rH + yH . Sub-matrices Aj+1 and A′j+1 contain arbitrary
values which are unimportant for the discussion here.

Moreover, if rjj = 0 in the Givens rotation or if there is only one
non-zero element in rH in Householder reflection, the permutation
matrix can be chosen to reorder the elements. Deeper treatment of
unitary transformation can be found in [20, 25, 26].

2.2. Polynomial Matrix Eigenvalue Decomposition (PEVD)

The PEVD algorithm for a para-Hermitian polynomial matrix,
A(z) = AP (z), where AP (z) = AH(z−1), A(z) ∈ CM×M ,
proposed in [11], can be expressed as

A(z) ≈ U(z)Λ(z)UP (z), (6)

where columns of U(z) are the eigenvectors with its corresponding
eigenvalues on the diagonal matrix, Λ(z). Elements in U(z) and
Λ(z) are in general, polynomials in z. The eigenvalues of A(z) are
preserved if U(z) satisfies the para-unitary condition [27] given by

UP (z)U(z) = U(z)UP (z) = I. (7)

The Givens rotation and Householder reflection matrices described
earlier also satisfy (7). They can be viewed as the degenerate case
where the matrix elements are coefficients of z0.

An elementary operator for a polynomial matrix, that changes
the polynomial order, is the t-th delay matrix applied to the j-th row,

Dj(z) =

Ij−1 0 0
0 z−t 0
0 0 IM−j

 . (8)

For numerical diagonalisation in (6), U(z) can comprise a sequence
of L para-unitary matrix factors, U1(z),U2(z), . . . ,UL(z), built
from elementary delay, rotation and/or reflection matrices.

2.3. Sign and Delay Ambiguity in Eigenvectors for PEVD

From [20], a conventional matrix with distinct eigenvalues has or-
thonormal eigenvectors, unique up to non-zero scaling factor, that
lies in the columns of U. Additionally, for polynomial matrices, the
eigenvectors are also unique up to a sign and delay factor in z. This
result will be exploited in Section 5. For example, if M = 3, then

Λ(z) =

λ1(z) 0 0
0 λ2(z) 0
0 0 λ3(z)

 , (9)

U(z) =
[
±z−pu1(z), ±z−qu1(z), ±z−ru3(z)

]
, (10)

UP (z) =
[
±zpu1(z−1), ±zqu2(z−1), ±zru3(z−1)

]H
, (11)

where λm is the m-th eigenvalue with corresponding eigenvector,
uTm = [u1m, u2m, u3m] and its associated arbitrary delay, z−m. The
diagonal terms of A(z) in (6) are

aii(z) =

3∑
k=1

λk(z)uik(z)u∗ik(z−1) (12)

and off-diagonal terms,

aij(z) = aPji(z) =

3∑
k=1

λk(z)uik(z)u∗jk(z−1). (13)

Observe that (12) and (13) hold for all arbitrary signs and delays
because the factors cancel out. Each sign ambiguity can also be
expressed as a complex scale factor which can be accounted for in
either the eigenvector or z. Furthermore, if z is evaluated on the unit
circle, the sign and delay ambiguity is equivalent to phase ambiguity,
that is inherent in any power estimation problem using only second-
order statistics. A deeper discussion is provided in [28].

3. SBR2 ALGORITHM

McWhirter et al. [11] proposed the SBR2 algorithm for factorising
(6) using a series of para-unitary transformation. Consider the fol-
lowing 2-by-2 para-Hermitian polynomial matrix example,

A(z) =

[
1 −0.1z−1 + 0.5z1

−0.1z1 + 0.5z−1 1

]
. (14)

For each iteration, SBR2 begins by searching for the largest off-
diagonal element, |ĝ|, across all powers of z as depicted in Fig. 1(i)
and comparing against a predefined threshold, δ. The element is in-
dexed by j-th row, k-th column and zt-plane. Shown in Fig. 1(ii),
the dominant element is brought to the principal plane, z0, using
a delay matrix if it exceeds δ. A Givens rotation, computed based
on the principal plane, is applied to the entire polynomial matrix as
indicated in Fig. 1(iii). This zeros the elements containing |ĝ| on
the principal plane. Due to symmetry, the search is confined to half
the off-diagonals and similarity transformation results in operations
acting on dominant pairs rather than just elements.

Fig. 1. Visualisation for the first iteration of SBR2 for (14) that
demonstrates the (i) search, (ii) delay and (iii) rotate step (after [29]).
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The overall para-unitary matrix which diagonalises the polynomial
matrix approximately after L iterations is

U(z) = UL(z)UL−1(z) . . .U1(z), (15)

where Ul(z) = GlDl(z) is the product of rotation and delay matri-
ces during the l-th iteration and satisfies (7).

Naturally, the number of delay operations may increase as the al-
gorithm progresses with more iterations. Consequently, the order of
the polynomial matrix may grow, as evident in Fig. 1, and becomes
unnecessarily large. This will increase search and computation time
as well as storage requirements.

For practical applications, Ũ(z) and Λ̃(z), approximations of
U(z) and Λ(z) in (6), are usually sufficient. This has led to the use
of a reconstruction error measure, ε =

∑
∀z ‖Ã(z)−A(z)‖F where

‖.‖F is the Frobenius-norm (F-norm), to indicate the accuracy of the
approximation. ε can also be expressed as a percentage of ‖A(z)‖F .
Several methods for trimming polynomial terms with small coeffi-
cients to keep the order compact have been proposed [9, 30, 31] but
the energy-based technique [32] was chosen in SBR2. For a given
ratio of squared F-norm or energy permitted to be lost, Ã(z) is ap-
proximated by the smallest τmax satisfying the inequality,

trim(A(z), µ) =

τmax∑
τ=−τmax

‖A(τ)z−τ‖2F ≥ (1−µ)‖A(z)‖2F , (16)

where µ is the trim parameter and A(τ) are the matrix coefficients.
Because only one element pair is zeroed during each SBR2 it-

eration, all off-diagonal elements have to be iteratively processed to
cycle through all elements. Consequently, more iterations and hence
slower convergence is expected as the number of elements increases
with the size of the matrix and polynomial order.

4. PROPOSED ENHANCEMENT TO SBR2

At each iteration, the Givens rotation increases the square of the trace
norm on the principal plane by 2|ĝ|2 due to zeroing of the symmetric
pair. However, if the matrix at the principal plane is reduced to tridi-
agonal form before rotation, the norm of the entire row and column,
which includes the dominant pairs, becomes compactly stored in the
super- and sub-diagonals. By applying the Givens rotations to the
tridiagonal matrix, more of the F-norm of the off-diagonal entries
on the principal plane can be transferred onto the diagonal at each
iteration.

For the l-th iteration, the Householder matrix is the product of
row-wise reflection matrices, Hj , defined in (5), recursively com-
puted from rows 1, 2, . . . , (M − 2) giving

Hl = HM−2 . . .H2H1, (17)

which reduces the principal plane to tridiagonal form. Each Givens
rotation based on (3) can be computed to zero off-diagonal elements
i.e. k = j + 1, j = 1, . . . ,M − 1 on the principal plane so that

Gl = G(M−1,M) . . .G(2,3)G(1,2). (18)

The unitary term for the l-th iteration fulfilling (7) is

Ul(z) = GlHlDl(z), (19)

a product of rotation, reflection and delay matrices and is applied to
the polynomial matrix across all z.

The proof of convergence follows directly from [11] since the
proposed algorithm transfers at least as much energy as SBR2 under

the worst case where there is only 1 off-diagonal pair on the prin-
cipal plane to be zeroed. With more than 1 off-diagonal pair, more
energy will be transferred. Consequently, there exists a minimal up-
per bound for the number of iterations, L, where the algorithm di-
agonalises A(z) approximately such that the modulus square of the
off-diagonals are arbitrarily small.

Although the trace norm of the principal plane increases mono-
tonically, the same transformation applied to other z-planes may in-
crease the magnitude of off-diagonal elements. With this, SBR2 with
Householder reduction is summarised in Algorithm 1.

Algorithm 1 SBR2 with Householder Reduction.

Inputs: A(z) ∈ CM×M , δ, maxIter, µ.
Initialise: l←0, g← 1 + δ, Λ̃(z) = A(z),Ũ(z) = I.

while (l <maxIter and g> δ) do
g← max |rjk(zt)|, k > j,∀t.
if (g> δ) then
l← l + 1.
Λ̃(z)← Dj(z)Λ̃(z)DP

j (z),
Ũ(z)← Dj(z)Ũ(z) // delay according to (8).
Λ̃(z)← HΛ̃(z)HH ,
Ũ(z)← HŨ(z) // reflect according to (17).
Λ̃(z)← G(θ, φ)Λ̃(z)GH(θ, φ),
Ũ(z)← G(θ, φ)Ũ(z) // rotate according to (18).
Λ̃(z)←trim(Λ̃(z), µ),
Ũ(z)←trim(Ũ(z), µ) // trim according to (16).

end if
end while
return Ũ(z), Λ̃(z).

5. SIMULATIONS AND RESULTS

The results presented here will follow the convention established in
[11] in which (6) was defined as A(z) ≈ UP (z)Λ(z)U(z). The
eigenvectors lie in the rows of U(z) and delays in (8) were applied
to index k instead of j. The first example is

A1(z) =

 1 −0.4iz 0
0.4iz−1 1 0.5z−2

0 0.5z2 1

 . (20)

With δ = 0, the convergence for this example using both methods
is shown in Fig. 2. The convergence for the first two iterations were
identical because the principal plane of the polynomial matrix had
only one off-diagonal pair. From the third iteration, our method was
able to transfer more energy to the diagonal as evident in the figure.
Despite so, our method took one more iteration to produce the same
polynomial factors as SBR2. This is because (20) is sparse with few
non-zero polynomial elements and like conventional matrix, numer-
ical diagonalisation using the Givens method may converge at least
as fast as the Householder method. The second example is

A2(z) =

 1 0.8z2 − 0.4z 0.7z
0.8z−2 − 0.4z−1 1 0.5z−2

0.7z−1 0.5z2 −1

 , (21)

for which our method took 17 iterations compared to 23 iterations
with the original SBR2 using δ = 10−3 and µ = 10−4. As shown
in Fig. 2, our method was able to transfer more energy at each iter-
ation and drive down the dominant element faster. Furthermore, our
method resulted in a lower reconstruction error, ε, from 0.0672 to
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0.0478. This is because trimming at every iteration keeps the matrix
factors compact at the expense of accuracy that accumulates with
more iterations. Λ(z) computed using both algorithms were identi-
cal. For U(z) shown in Fig. 3, the eigenvectors produced by both
methods are comparable up to a delay ambiguity as discussed in Sec-
tion 2.3. The compensated delay was also computed and shown as
black plus signs.

Without trimming, our method converges in 30 iterations com-
pared to 37 iterations using the original SBR2. The order for the
polynomial factors were comparable with slight savings at 216 ver-
sus 224 for Λ(z) and 106 versus 110 for U(z). Both algorithms
gave ε = 0 (up to machine precision).

The algorithms were compared with a decorrelation example in-

volving 3 sensors and 2 sources using δ =
√

N1
3×104

where N1 is

the square of the trace norm at the principal plane and µ = 10−4.
Each channel was a 5th order Finite Impulse Response (FIR) filter
with coefficients drawn from a uniform distribution, U [−1, 1]. The
source signals were independent, identically distributed sequences
with each sample being assigned ±1 with equal probability. Each
sensor output was also corrupted by Gaussian noise with σ = 1.8.
1000 samples were used in the computation of A(τ), assumed to be
negligibly small outside the correlation window, W . With W = 10,
an approximated z-transform, A(z) =

∑W
τ=−W A(τ)z−τ , was

used in the computation.
For the realisation shown in Fig. 4, our method took 64 itera-

tions while SBR2 took 90 iterations and the resulting ε values were
respectively, 1.4515 and 1.7722. Lower ε was likely due to fewer
iterations and accumulation of inaccuracies arising from trimming.
The order of Λ(z) was 27 for both methods while the order of U(z)
was 33 and 35.

Without trimming, µ = 0, our method took 80 iterations while
SBR2 took 114 iterations and the resulting order of Λ(z) was 633
and 1148 and U(z) was 624 and 1138. We note, however, that the
overall computational complexity depends on many factors includ-
ing the number of iterations, search strategy, zeroing and trimming
method, polynomial order at each iteration and the implementation.

To further compare their performance, a Monte-Carlo simulation
of 1000 decorrelation trials with trimming was conducted. The rela-
tive iteration difference between both methods was computed based
on (LProposed − LSBR2) × 100/LSBR2% and relative error difference
was based on (εProposed − εSBR2) × 100/‖A(z)‖F%. From the his-
togram shown in Fig. 5, the proposed method gave an average of
12.35% reduction in the number of iterations over SBR2 with an av-
erage reduction of 0.1% in relative ε. Moreover, because the distri-
bution was asymmetric, our proposed method enjoyed a reduction in
the number of iterations for 82.4% of the trials. The results obtained
with both methods were consistent to within 1% ε.

6. CONCLUSION

We have briefly reviewed SBR2, the classical algorithm used for
PEVD, and proposed an enhancement using Householder reflection
to reduce the principal plane to tridiagonal form prior to rotation.
This enhanced method is able to transfer more energy to the princi-
pal diagonal at every iteration, enabling quicker convergence with an
average of 12.35% reduction in iteration counts, and generally poly-
nomial matrix factors with lower order and 0.1% improvement in
reconstruction error. In the comparative simulation, our method en-
joyed convergence speed improvements for 82.4% of the trials. Fur-
thermore, our proposed method is related to SMD and is an alternate
way to diagonalise the Hermitian principal plane at every iteration.
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