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ABSTRACT

While the majority of binaural beamformers aim to minimize
the output noise power while (approximately) preserving the binau-
ral cues of the sources using constraints, we propose in this paper
to minimize the binaural-cue distortions of the sources in the acous-
tic scene, such that the output noise power is below a predefined
threshold. This new problem formulation is a convex QCQP prob-
lem, which leads to an efficient trade-off between noise reduction,
binaural-cue preservation and complexity. In particular, the pro-
posed beamformer provides a better trade-off between noise reduc-
tion and binaural-cue preservation (in terms of interaural level and
phase differences) compared to the well-known binaural minimum
variance distortionless response-η beamformer.

Index Terms— Binaural beamforming, binaural cues, convex
optimization, noise reduction.

1. INTRODUCTION

Beamforming [1, 2] plays an important role in hearing assistive de-
vices (HADs) [3, 4] such as hearing aids and cochlear implants. It
aims at the reduction of background noise while preserving the sig-
nal coming from the target direction using multi-microphone record-
ings. The larger the number of microphones, the larger the degrees
of freedom for noise reduction. Apart from noise reduction, some
degrees of freedom may also be dedicated to preserve binaural cues
of the acoustic sources after filtering [4]. Preservation of the direc-
tional binaural cues (interaural level and phase differences) is impor-
tant for the HAD user to correctly localize the sources after filtering.
Typically, this is achieved by using binaural beamformers which are
implemented on binaural HAD systems [3, 4]. Usually, in binau-
ral HAD systems, there are two collaborative HADs, with multiple
microphones each, exchanging information via a wireless link [3].

Several binaural beamformers have been proposed in the liter-
ature, which can be classified into two main categories based on
the information that is used. The first category consists of binaural
beamformers (see e.g., [5–8]) that only need the noise cross power
spectral density matrix (CPSDM) and the acoustic transfer func-
tions (ATFs) of the target source with respect to the microphones.
The binaural minimum variance distortionless response (BMVDR)
beamformer has the best noise reduction performance among all dis-
tortionless linear spatial filters, since it spends all degrees of freedom
on noise reduction [4]. As a result there may be severe binaural-cue
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distortions of the noise field after filtering [4]. Another example is
the BMVDR-η beamformer [5,8], which adds a portion of the unpro-
cessed acoustic scene to the BMVDR output. The larger the portion
that is added, the better the binaural-cue preservation, but the worse
the noise reduction performance.

The second category consists of binaural beamformers (see
e.g., [9–12]) which also depend on the ATFs of the interfering
sources. The joint binaural linearly constrained minimum variance
(JBLCMV) beamformer [10, 11] uses one linear equality constraint
per source/location to strictly preserve its binaural cues. Although
this method has a closed-form solution, due to the limited number
of available microphones, the equality constraints exhaust rapidly
the degrees of freedom. This method is therefore inappropriate
when a large number of sources is present. To tackle this problem,
the relaxed JBLCMV (RJBLCMV) was proposed in [12], which
uses inequality constraints instead of strict equality constraints to
preserve the binaural cues. As a result, the optimization problem
of the RJBLCMV has a larger feasibility set than the JBLCMV
and, thus, the RJBLCMV allows more constraints to be used for
more sources. Alternatively, for the same number of constraints,
the RJBLCMV can lead to a better noise reduction performance by
allowing some binaural-cue distortions. The optimization problem
of the RJBLCMV method is not convex and does not have a closed-
form solution. In [12], this problem was approximately solved
with a series of convex optimization problems per time-frequency
tile [12] leading to a large computational complexity.

In this paper, we propose an alternative problem formulation
for binaural beamforming that belongs to the second category men-
tioned above. Instead of imposing constraints on binaural-cue
preservation, we minimize the sum of the binaural-cue distortions
under a constraint that the output noise power is below a user-defined
threshold. The obtained formulation is a convex QCQP optimization
problem [13], which leads to a beamformer that has a much lower
computational complexity than the RJBLCMV optimization prob-
lem solver proposed in [12]. Moreover, the proposed method shows
a better trade-off between directional binaural-cue preservation and
noise reduction/predicted intelligibility compared to the BMVDR-η
method and a similar trade-off as the RJBLCMV.

2. PRELIMINARIES

Let us assume that there are two HADs, each placed on one of the
two ears, having ML and MR microphones on the left and right
HAD, respectively. By allowing communication between the two
devices, the two microphone arrays are merged into a single larger
array of M =ML+MR microphones. The multi-microphone noisy
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signal model in the short-time Fourier transform domain is given by

y(t, k)=a(t, k)s(t, k)+

r∑
i=1

bi(t, k)ui(t, k)+v(t, k)︸ ︷︷ ︸
n(t,k)

∈CM×1, (1)

where t, k are the time-frequency indices, s and ui are the target
and i-th interfering signals at the original locations, and a and bi
their ATFs, respectively. The ambient noise vector v is the sum
of microphone-self noise and diffuse noise. The total noise signal
is denoted by n. In binaural beamforming, two microphones are
typically used as reference microphones, one at each HAD. The first
ML elements of all vectors in (1) are associated to the left HAD
with the first element referring to its reference microphone, while
the remaining MR elements are associated to the right HAD, with
the last element referring to its reference microphone. The vector
elements corresponding to the left and right reference microphones
have subscripts L and R, respectively. Since we perform the filtering
operations for each time-frequency tile independently, we omit the
time-frequency indices from now on for brevity.

3. EXISTING BINAURAL BEAMFORMERS

In binaural beamforming, there are two filters wL,wR ∈ CM×1

forming the binaural filter w = [wT
L wT

R ]T ∈ C2M×1. Since there
are two filters, there are two outputs, given by

xL = wH
L y, xR = wH

R y, (2)

where xL and xR are played back by the loudspeaker of the left and
right HAD, respectively. All binaural filters examined in this pa-
per belong to the family of distortionless filters (with respect to the
target) satisfying the underdetermined system of equations given by

wHΛA = fHA , (3)

where

ΛA =

[
a 0
0 a

]
∈ C2M×2, fA =

[
a∗L
a∗R

]
∈ C2×1. (4)

Finally, a common goal of most binaural beamformers is to reduce
the output noise power of the binaural filter given by

wH
L PnwL + wH

R PnwR = wHPw, (5)

where Pn is the CPSDM of the noise and P is a block-diagonal
matrix with its two block matrices being each equal to Pn. In the
sequel, we often use the binaural filter that performs no noise re-
duction, but simply presents the noisy signal of the reference micro-
phones to the left and right HAD and is given by w = e, with

e = [eTL eTR ]
T , eL = [1 0 · · · 0]T , eR = [0 · · · 0 1]T . (6)

The most important directional binaural cues are the interau-
ral level differences (ILDs) and the interaural phase differences
(IPDs) [14], which are the magnitude square and phase, respec-
tively, of the interaural transfer function (ITF) [15]. The ITF of a
point source, with ATF bi, before and after filtering is given by [15]

ITFiin =
biL
biR

, ITFiout =
wH

L bi
wH

R bi
. (7)

If the input and output ITFs are equal, there will be no directional
binaural-cue distortions. Some of the binaural beamformers exploit
this observation by setting ITFiin = ITFiout as a constraint [10,11,16].

3.1. BMVDR Beamformer

The BMVDR [4] filter is the best performing linear binaural filter in
terms of noise reduction among those filters satisfying the constraint
in (3). It is the solution of the following optimizaiton problem:

ŵBMVDR = arg min
w

wHP̂w s.t. wHΛ̂A = f̂HA , (8)

where theˆdenotes quantities that need to be estimated in practice
(i.e., the noise CPSDM and the target ATFs). For the BMVDR, the
input and output ITFs are only equal for the target (if a = â), but not
for the interferers. More specifically, after filtering, the noise sounds
as if it is coming from the target direction [4].

3.2. BMVDR-η Beamformer

The BMVDR-η [5, 8] adds a portion of the unprocessed acoustic
scene to the BMVDR output in order to partially preserve the binau-
ral cues of the noise field. The BMVDR-η filter is given by

ŵBMVDR−η = ηŵBMVDR + (1− η)e, (9)

where η ∈ [0, 1] is the trade-off parameter that controls noise re-
duction and binaural-cue preservation. The ŵBMVDR−η also satisfies
the constraint in (3). For η=1, the BMVDR is obtained, while for
η=0, the unprocessed scene is obtained. If η > 0, the output ITF of
the BMVDR-η is never equal to the ITF input of the interferers.

3.3. JBLCMV Beamformer

The joint binaural linearly constrained minimum variance (JBLCMV)
beamformer [10, 11] adds constraints to the problem in (8) such that
the directional binaural-cues of the interfering sources are exactly
preserved by guaranteeing that the input and output ITFs are equal
for all individual point source interferers. That is,

ŵJBLCMV = arg min
w

wHP̂w s.t. wHΛ̂A = f̂HA ,

wHΛ̂B = 0T , (10)

where

Λ̂B =

[
b̂1b̂1R · · · b̂r b̂rR

−b̂1b̂1L · · · −b̂r b̂rL

]
∈ C2M×r. (11)

Let Λ̂=[Λ̂A Λ̂B] and f̂ =[f̂TA 0T ]T . The JBLCMV problem in (10)
has a closed-form solution (only for r ≤ 2M − 2) given by

ŵJBLCMV =

P̂−1Λ̂
(
Λ̂HP̂−1Λ̂

)−1

f̂ if r ≤ 2M − 3

(Λ̂H)−1 f̂ if r = 2M − 2.
(12)

Unlike the BMVDR and BMVDR-η, the JBLCMV can simultane-
ously achieve perfect preservation of the directional binaural cues (if
bi = b̂i ∀i) and some noise reduction if r ≤ 2M − 3.

3.4. RJBLCMV Beamformer

The relaxed JBLCMV (RJBLCMV) has a similar problem formu-
lation as in (10), except for the fact that the equality constraints
for the binaural-cue preservation of the interferers are replaced by
non-convex inequality constraints. The inequality constraints upper
bound the ITF error and allow a controlled trade-off between noise
reduction and binaural-cue preservation. Due to the non-convex na-
ture of the RJBLCMV optimization problem, a successive convex
optimization method is used to approximately solve it in [12]. Solv-
ing multiple convex optimization problems per time-frequency tile
leads to a large computational load for the application at hand.
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4. PROPOSED METHOD

Unlike the methods reviewed in Sec. 3, which minimize the output
noise power under controlled binaural-cue distortions, the proposed
method does the opposite. It minimizes the distortions of the direc-
tional binaural cues of all interferers, given by ||wHΛ̂B||22, while
controlling the noise reduction performance using the constraint

p̂LL + p̂RR −wHP̂w ≥ φ(p̂LL + p̂RR − ŵH
BMVDRP̂ŵBMVDR), (13)

where p̂LL + p̂RR = eT P̂e is the sum of the estimated input noise
power at the two reference microphones and φ ∈ [0, 1] is the trade-
off parameter that controls the output noise power. The constraint
in (13) provides solutions that have a better noise reduction gain
compared to a fraction φ of the BMVDR noise reduction gain. Alto-
gether, the proposed convex QCQP problem is given by

ŵprop = arg min
w

||wHΛ̂B||22 s.t. wHΛ̂A = f̂HA ,

wHP̂w ≤ ε(φ), (14)

where ε(φ) follows from (13) and is given by

ε(φ) = φŵH
BMVDRP̂ŵBMVDR + (1− φ)(p̂LL + p̂RR). (15)

If φ = 0, the optimization problem will provide a solution which is
better or equal to the unprocessed scene in terms of noise reduction,
while if φ = 1, the optimization problem will provide the BMVDR
solution, which is the only feasible solution in this case. An interest-
ing choice of φ is given by

φJBLCMV =
p̂LL + p̂RR − ŵH

JBLCMVP̂ŵJBLCMV

p̂LL + p̂RR − ŵH
BMVDRP̂ŵBMVDR

, (16)

which is only defined for r ≤ 2M − 2, since the JBLCMV filter is
only defined in this case. If we select φ = φJBLCMV, we will constrain
the problem in (14) to have at least the noise reduction performance
of the JBLCMV. The feasibility set of the problem in (14), for a
certain choice φ, is given by

S(φ) = {w : wHΛ̂A = f̂HA ∩ wHP̂w ≤ ε(φ)}. (17)

Now we provide two properties that will be useful in the sequel to
better understand the problem in (14).

Property 1. The matrix Λ̂BΛ̂H
B � 0 is rank deficient, because

the last row is minus the first one, so that ||wHΛ̂B||22 has multiple
minimizers. In this situation, the QCQP in (14) may have multiple
solutions. If there are multiple solutions, they are all optimal.

Property 2. ∀φ1, φ2 ∈ [0, 1], φ1 ≤ φ2 ⇐⇒ ε(φ1) ≥ ε(φ2) ⇐⇒
S(φ2)⊆S(φ1).

Corollary 1. Let r ≤ 2M−2. ∀φ ∈ [0, φJBLCMV], ŵJBLCMV ∈ S(φ).

Proof. Since r≤2M−2, ŵJBLCMV will be realizable (see (12)) and,
thus, ŵJBLCMV ∈S(φJBLCMV). Hence, by Property 2, we have ∀φ ∈
[0, φJBLCMV], S(φJBLCMV)⊆S(φ) and, thus, ŵJBLCMV∈S(φ).

Proposition 1. Let r ≤ 2M − 2. For all φ ∈ [0, φJBLCMV], ŵprop =
ŵJBLCMV is a solution of the QCQP problem in (14).

Proof. Since r ≤ 2M − 2, ŵJBLCMV will be realizable (see (12)).
Since ||ŵH

JBLCMVΛ̂B||22 = 0 (see (10)) and ∀w, ||wHΛ̂B||22≥0, and
since by Corollary 1, we have ∀φ ∈ [0, φJBLCMV], ŵJBLCMV ∈ S(φ),
a solution will be ŵprop =ŵJBLCMV, ∀φ ∈ [0, φJBLCMV].

In words, Proposition 1 says that when there are enough degrees
of freedom (i.e., for r ≤ 2M − 2), and the output noise is not con-
strained to be very small (i.e., φ≤φJBLCMV, e(φ)≥e(φJBLCMV)), then
the binaural-cue distortions will be zero and one of the solutions of
the the problem in (14) will be the JBLCMV solution. This will not
only happen for φ = φJBLCMV, but also for all smaller φ values since
the binaural-cue distortions cannot be reduced any further. Recall
that the problem formulation in (14) may have multiple optimal so-
lutions (see Property 1). For instance, for φ = 0, both the ŵJBLCMV

and e are optimal. In binaural beamforming, one would like the
best trade-off between noise reduction and binaural-cue preservation
and, therefore, among all possible solutions of the problem in (14)
for φ ∈ [0, φJBLCMV], we always select the ŵJBLCMV solution, which
is better suited to our goal since it provides the minimum possible
output noise.

Remark 1. If r > 2M − 2 and φ = 0, the solution of the problem
in (14) is selected as ŵprop = e.

The problem in (14) may have multiple solutions (see Property
1). For r > 2M − 2 and φ = 0, we select the solution ŵprop =
e, since it is the only known closed-form solution of the problem
in (14) for r > 2M−2 and φ=0. Thus, by selecting ŵprop = e the
implementation is faster compared to an iteratively obtained solution
from the proposed method.

4.1. Solver for the Proposed Problem

The Lagrangian of the problem in (14) is given by

L (w,µ, λ) = wHΛ̂BΛ̂H
B w + λ

(
wHP̂w − ε(φ)

)
+ <{µH(Λ̂H

A w − f̂A)}, (18)

where < denotes the real part of a complex vector. Taking the gradi-
ent of (18) with respect to w and setting this equal to zero we obtain

ŵ(λ,µ) = −1

2

(
Λ̂BΛ̂H

B + λP̂
)−1

Λ̂Aµ. (19)

Combining wHΛ̂A = f̂HA and (19), we obtain

µ = −2
(
Λ̂H

A (Λ̂BΛ̂H
B + λP̂)−1Λ̂A

)−1

f̂A. (20)

Combining (20) and (19) we obtain

ŵ(λ) = T(λ)
(
Λ̂H

A T(λ)
)−1

f̂A, (21)

where
T(λ) =

(
Λ̂BΛ̂H

B + λP̂
)−1

Λ̂A. (22)

We can use bisection [13] to find the optimal λ̂≥0, such that ŵprop =

ŵ(λ̂), where ŵ(λ̂) is given in (21). More specifically, the bisection
method initially selects λa, λb such that ŵ(λa)

HP̂ŵ(λa) ≥ ε(φ)

and ŵ(λb)
HP̂ŵ(λb)≤ε(φ), after which computes λc =(λa+λb)/2.

If ŵ(λc)
HP̂ŵ(λc) ≥ ε(φ), it assigns to λc the λa value, while if

ŵ(λc)
HP̂ŵ(λc)≤ ε(φ), then it assigns to λc the λb value. It keeps

iterating until |λa−λb| ≤ t, where t is a small threshold. A warm-
start procedure is used for the initial choices of λa and λb for each
frequency bin by using the converged λa and λb of the previous fre-
quency bin. If these warm-started λa and λb do not satisfy the ini-
tial conditions mentioned above, they are increased and/or reduced
gradually such that they do so. This warm-start approach typically
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reduces the average number of iterations that bisection takes to con-
verge per frequency bin and combined with the fact that the proposed
filter has a closed-form solution as a function of a single variable (the
Lagrange multiplier λ) leads to a fast implementation.

Recall that, if r ≤ 2M − 2 and φ ∈ [0, φJBLCMV], the JBLCMV
solution will be a solution to the proposed optimization problem. In
order to speed up the computations even further, we use the closed-
form solution in (12), instead of the iterative approach explained just
above, to obtain the solution of the proposed problem for this range
of φ and r values/settings. For r > 2M − 2 we cannot do this,
since the JBLCMV solution is unrealizable and, thus, the proposed
filter will be computed iteratively as explained before. For φ = 0
and r > 2M − 2, we do not process the microphone signals (see
Remark 1). Note that, unlike the JBLCMV filter which does not have
a solution for r > 2M − 2, the proposed framework guarantees a
solution for any number r.

5. EXPERIMENTS

In this section, we compare the methods reviewed in Sec. 3 and the
proposed method in Sec. 4. We compare the trade-offs between noise
reduction/predicted intelligibility and directional binaural-cue dis-
tortions and the different computational times for each method. We
compute the directional binaural-cue distortions as measured from
the interaural level differences (ILDs) and interaural phase differ-
ences (IPDs) as in [12], averaged over frequency and sources. The
ILD distortions were averaged for frequencies above 3 kHz and the
IPD distortions were averaged below 1.5 kHz, since these ranges are
perceptually relevant for localization [14]. The noise reduction was
computed as the maximum of the segmental-signal-to-noise-ratio
(SSNR) at the two ears, to take into account the better ear effect.
Similarly, we determine the predicted intelligibility by calculating
SIIB [17] at both ears and take the maximum to take the better ear
effect into account. We use SIIB as our scene includes both point
noise sources as well as reverberation and SIIB has shown to be a
good intelligibility predictor in such cases [18].

The acoustic scene consists of five sources in total (1 m away
from the head center), from which four sources are interferers (male
talker “A” at 80o, music signal at 50o, vacuum cleaner at −35o, and
male talker “B” at −80o) and a target (female talker at 0o). The
SNR of the target signal at its original location with respect to each
interferer signal at its original location is 10 dB. The total num-
ber of microphones is M = 4 (two microphones per HAD, i.e.,
ML = MR = 2). The head impulse responses from the office
environment from the database in [19] were used to construct the
noisy signals. All methods used estimated ATFs using a simple es-
timation method. To do so, we gathered 5 s of each recorded point
source in isolation (including its late reverberation and microphone-
self noise) at the microphone array and we estimated its CPSDM.
Then we assigned as its ATF, the eigenvector corresponding to the
largest eigenvalue. The binaural filters from all methods were com-
puted only once using a sample average noise CPSDM estimated us-
ing 5 s of noise-only microphone signals. We used the overlap-and-
add method [20] with a square-root Hann window for the analysis
and synthesis and a frame-length of 10 ms with an overlap 50%.

Fig. 1 shows the trade-off between noise reduction and direc-
tional binaural-cue distortions and the trade-off between predicted
intelligibility and directional binaural-cue distortions as a function
of η, c, φ, which are the trade-off parameters of the BMVDR-η,
the RJBLCMV and the proposed method, respectively. It is clear
from the results that for a certain amount of binaural-cue distor-
tion, the proposed method and the RJBLCMV method provide a
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better noise reduction and predicted intelligibility compared to the
BMVDR-η approach. In Fig. 2, the proposed method achieves a sig-
nificantly lower computational load than the RJBLCMV. Remark-
ably, for c, φ ∈ (0, 1), the proposed approach is at least 4500 and at
most 18700 times faster compare to the RJBLCMV method. Note
however that the RJBLCMV filter is computed via CVX toolbox [21]
and we expect that this difference will be smaller using a solver op-
timized for this problem. Moreover, for η, φ ∈ (0, 1), the proposed
method is only 2 to 22 times slower compared to the BMVDR-η ap-
proach. Note that in Fig. 1, the JBLCMV did not preserve exactly the
binaural-cues, due to estimation errors in the ATFs of the sources.

6. CONCLUSION

We proposed a binaural beamformer which provides an efficient
trade-off between noise reduction, binaural-cue preservation and
complexity. If there are enough degrees of freedom available, the
proposed approach has as boundary solutions the BMVDR and
JBLCMV, otherwise it has the BMVDR and unprocessed scene. In
our simulation experiments, the proposed method shows a better
noise reduction and predicted intelligibility performance given a
certain amount of binaural-cue distortion compared to the BMVDR-
η approach, and a significant computational complexity advantage
over the RJBLCMV method.
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