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Abstract—Quantum signal processing invokes the injection of
abstract quantum mechanical frameworks into classical signal
processing problems. In this work we apply this idea to the
notion of optimal likelihood ratio tests within the context of
the location verification problem. We first draw parallels with
quantum mechanical measurements and the notion of generalized
likelihood ratio measurements. As we show, these quite different
measurement frameworks are mathematically similar since both
can be described in the language of projections into subspaces
- the projections removing the nuisance parameters of the
underlying system in the latter case. We then show how the
imposition of an ‘artificial’ mathematical constraint, borrowed
from a similar constraint imposed on quantum mechanics by
the uncertainty principle, is likely to assist in machine-learning
solutions of the location verification problem - such solutions
being more useful in real-world deployments.

I. INTRODUCTION

The term “Quantum Signal Processing” (QSP) was first
coined in a series of works by Eldar and collaborators in 2001
[1]. The key idea of QSP is the introduction of conceptual
quantum mechanical frameworks into the realm of classical
signal processing with the idea of delivering novel algorithmic
solutions that otherwise would go unnoticed. In some sense
this idea borrows from a well-traveled path in engineering in
the ‘borrowing’ from Nature of ideas and frameworks that lead
to new insights. Swarming of bees and connections to routing
within ad hoc mobile networks being one of many examples
[2].

QSP borrows from Nature in the same sense in that it
builds on Nature’s most fundamental construction - Quantum
Mechanics (QM). In the extended literature, QSP has been
widely used to develop new (or improvements to existing)
processing algorithms related to measurements, quantization,
and consistency, e.g. [1,3-6].

Within the abstract frameworks of QM lies a series of pos-
tulates (true but unprovable statements) from which physics’
most successful theories are built. QM leads to a theory
of measurements within which lies critical constraints that
must be obeyed. These measurements can be described in
the context of projections into subspaces conditioned on
mathematical constraints imposed on the matrices underlying
the QM system. This is perhaps most explicitly seen in
the context of Gaussian CV (Continuous Variable) quantum
states whose covariance matrix, V/, written in terms of the
quadrature operators of the electromagnetic field, must satisfy
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upon measurement V' + €2 > 0, where € is of the symplectic
form [7].

Here we apply the QSP idea to an important area in classical
signal processing, the construction of a robust Location Ver-
ification System (LVS). In a LVS, a binary decision is made
on an input data vector (the signal) as to whether the claimed
location of a device is reliable or not (genuine or malicious). In
a series of works, Yan et al [8-10] have constructed optimal
LVSs under a series of hypothetical channel conditions and
assumed signal metrics. As we see in the following, optimal
decision theory within the context of a LVS in many cases
collapses to a Generalized Likelihood Ratio Test (GLRT).
The work of [10] further shows that such GLRTs can be
constructed within the framework of a Differential Likelihood
Ratio Test (D-LRT). However, optimal LVSs formed in this
manner suffer from the assumptions upon which they are
built, namely, idealized assumptions on the noise and channel
conditions in which they operate.

In the real-world, the true channel and noise conditions
are a priori unknown and dynamical. To combat this, a new
direction for LVS construction has been recently proposed,
namely, the coupling of machine learning and optimal decision
theory [11]. It is this new framework for LVS that we suggest
the QSP concept can be easily applied. Specifically, we
suggest applying a mathematical constraint on the underlying
signal matrices of the LVS similar (but less constrained) to
that needed to satisfy the uncertainty principle in QM. This
artificial introduction of uncertainty to the LVS turns out to be
a very efficient means to overcome the issue of ‘overtraining’
within the context of neural-network based LVSs.

To make progress, we first draw parallels with the GLRT
problem and projections into subspaces. Bear in mind in what
is to follow our focus on GLRTsS is largely in the context of
location verification. However, the ideas we next explore can
be implemented in many other problems that are based on the
use of a GLRT.

II. GENERALISED LIKELIHOOD RATIO TESTS

It is well known that the Likelihood Ratio Test (LRT) is
the uniformly most powerful (UMP) test when there are no
nuisance parameters in both the null and alternative hypothe-
ses [12]. For the case in which the null hypothesis or the
alternative hypothesis is composite (dependent on a nuisance
parameter), the UMP test only exists for a one-sided test
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problem (monotonic distribution of the test statistic) [13]. For
a two-sided test problem (non-monotonic distribution of the
test statistic), in which the null hypothesis or the alternative
hypothesis is composite, no UMP test exists [14] - although
the Generalized Likelihood Ratio Test (GLRT) is known to
be asymptotically optimal for such problems [13, 15]. Due to
this, the GLRT has been widely adopted in many two-sided
composite test problems, such as pixel (or target) detection
[16, 17], spectrum sensing [18, 19], and signal detection [20,
21]. To obtain the GLRT, we first need to find the maximum
likelihood estimations of all the nuisance parameters, followed
by the conditional LRT. As such, from a signal processing
perspective, the complexity of the GLRT is higher than that
of the LRT.

We are particularly interested in the role played by nuisance
parameters in the context of location verification [8]. Specif-
ically, we are interested in the special composite hypothesis
testing problem where both the null and alternative hypotheses
are composite and the nuisance parameters are common at all
elements of the original observation vector. In this specific
problem each hypothesis is dependent on a different nuisance
parameter (although our analysis will still apply when the two
nuisance parameters are equal but not zero). In the context
of some location verification settings, these two nuisance
parameters represent the transmit powers of legitimate and
malicious users. For location verification, the work of [10]
also considered an LRT based on differential observations
(D-LRT). Considering the property of our special problem,
namely, that the nuisance parameters are common at all ele-
ments of the original observation vector, the D-LRT subtracts
a reference original observation from the remaining original
observations to obtain the differential observation vector - the
latter being independent of the nuisance parameters. As such,
the composite hypothesis testing problem can be solved by the
D-LRT. As proved in [10], the performance of the D-LRT is
exactly equivalent to that of the GLRT - in which the nuisance
parameters first have to be estimated.

We find that using the D-LRT to solve the GLRT, problems
can be constructed from within a QSP framework. Specifically,
in the D-LRT we project the measurements into subspaces,
which are orthogonal to the subspaces of the nuisance param-
eters. As such, the nuisance parameters no longer affect the
system. In this work we discuss how to interpret the D-LRT
from the perspective of quantum signal processing, and how
we can use the QSP framework as a guide to the creation of a
LVS more suitable for real-world deployment. As we progress,
we will also prove some results presented in [9] with regard to
the performance of D-LRT from the quantum signal processing
perspective.

III. BINARY COMPOSITE HYPOTHESIS TESTING PROBLEM
OF INTEREST

We now outline the system model and state the assump-
tions adopted within the binary composite hypothesis testing
problem. We denote the null hypothesis and the alternative

hypothesis by Ho and 1, respectively. The composite obser-
vation model is given by

{ Ho : y:001N+u+w

(1
Hi: y=0i1ny +v+w,

where y is the IV x 1 original observation vector, 6y is an
unknown scalar parameter under H, 6, is an unknown scalar
parameter under /4, 1 is the N x 1 vector with all elements
set to unity, u is an arbitrary signal NV x 1 vector (e.g., related
to the timings at NV base stations), v is another arbitrary signal
N x1 vector, and w is the N x 1 zero-mean multivariate normal
random variable, of which the covariance matrix is R under
both Hg and ;. Due to the additive noise w, y under H,
conditional on 6, follows a multivariate normal distribution,
which is given by

f(y‘eo,/Ho) :N(901N+U,R). 2)

Likewise, y under H; based on a known #; also follows a
multivariate normal distribution, which is given by

f(y|9177'[1):N(911N+V7R). 3)

The problem of interest in this work is to test whether
the observations are generated from 7y or /i, which is a
binary hypothesis testing problem. Mathematically, the binary
hypothesis testing problem is given by

Dy

>
wy) Z A 4)

Do
where 1 (y) is some specific function of y, A is a threshold
corresponding to ¢ (y), and Dy and D; are the binary decisions

that infer whether y is from 7y or i, respectively.

IV. GENERALIZED LIKELIHOOD RATIO TEST (GLRT)
BASED ON ORIGINAL OBSERVATIONS

When some parameters in the observation model are un-
known, the binary detection problem presented in (4) becomes
a composite hypothesis testing problem with the unknown
model parameters treated as nuisances. The GLRT is asymp-
totically optimal in the case where no UMP test exists [13].
As such, although not necessarily optimal, the GLRT is widely
used to solve the composite hypothesis testing problem. We
next characterize the performance of the GLRT based on y by
deriving its false positive rates and its detection rates.

The binary decision rule embedded in the GLRT based on
the original observations obtained from (1) is given by

f y|é17H1 ’D>1
Aly) = ! ) - Am 5)
Do

f (Y|90,Ho)

where A (y) is the likelihood ratio of y, Ag is the threshold
corresponding to A (y), and f, and #; are the maximum-
likelihood estimations of 8y and 61, respectively. As presented
in [10], the final decision rule for the GLRT can be derived
from (5), and from which the detection performance of the
GLRT can be analyzed.
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From the perspective of quantum signal processing, we can
understand the GLRT problem in the context of location veri-
fication as a projection into subspaces. This issue is described
more in the following section where we show how the GLRT
can be viewed as a D-LRT with connections into the projecting
out of nuisance parameters (see also [22]).

V. PROJECTING MEASUREMENTS INTO SUBSPACES
WITHOUT NUISANCE PARAMETERS

A. Differential Likelihood Ratio Test

In this subsection, we present the D-LRT from the perspec-
tive of QSP.

From (1), we can see that 6y and 6; are constant at all
elements of the original observation vector y under H, and
‘H1, respectively. As such, we can obtain differential observa-
tions by subtracting a reference original observation from all
the remaining observations. Such differential observations are
not functions of 6y and #; anymore. Therefore, the composite
hypothesis testing problem presented in (4) can also be solved
by applying the D-LRT, where we project the measurements
into the null space associated with the nuisance parameters.

We achieve the (N — 1) basic differential observations from
the N original observations by subtracting the /N-th original
observation from all other (N — 1) original observations. As
such, the m-th differential observation under H is given by

Ay = Aty + Awy,, m=1,2,....N — 1, (6)

where Au,, = u,, — uy, and Aw,, = w,, — wy. We note
that Awy,, is Gaussian with zero mean and variance 2(c% —
R,.n). We denote the (N —1) x (N — 1) covariance matrix of
the (N — 1)-dimension differential observation vector Ay =
[Ayi,...,Ayn_1]T as D. Then, we have

Dmn = Ryn + Rmn - RmN - RnN- (7)

where D, is the (m,n)-th element of D and R,,, is the
(m, n)-th element of R. As such, we have

f (Ay‘IHO) :N(AU,D), 3

where Au = [Auy,...,Auy_1]T is the mean vector.
Likewise, the m-th differential observation under #; is

where Awv,, = v,, — vy. Noting Av = [Avy, ..., Avy_1]T,
we have
f(Ay|H1) = N(Av,D). (10)

Since f (Ay|Ho) and f (Ay|H1) are both normal func-
tions, the false positive rates and the detection rates of the
D-LRT are derived as [8]

1 _Au)' D! _

ap— O InAp + 5 (Av—Au)” D™ (Av—-Au) A
\/ (Av—Au)" D! (Av-Au)
1 — Tp-1 —

6= 0 InAp — 5 (Av—Au)’ D™ (Av—-Au) 12

\/(Av—Au)T D! (Av—Au)

where A p is the threshold corresponding to the likelihood ratio
of Ay, which is A (Ay) £ f (Ay|H1)/f (Ay[Ho).

B. Properties of the Considered Measurement Projection

As proved in [10], the detection performance of the D-LRT
(measurement projection) is exactly the same as that of the
GLRT, which is asymptotically optimal. In this subsection,
we present some properties of this projection method together
with the associated proofs in the following propositions.

Proposition 1: For any N > 1 the detection performance of
the D-LRT based on N difference measurements is at least as
good as the performance of the GLRT for N +1 non-difference
measurements.

Proof: Following [9], in order to prove Proposition 1 we
only have to prove

N , 1 N N+1 N+1 2
Zgi—N< gz> Zgz N+1<Zgz>,

p(N+1)

(13)

where the g; are components of the vector g = v — u (for the
RHS of above the vector becomes of length N + 1). Consider

(N +1)
1 al AN
_ 2 , = ,
9N T N (Zgz +9N+1> + N (;%)
N

2
=gx1— N ) (Z gz) +2 <Z 91’) gN+1+ Ir 1

i=1

—»(N)

N 2
_ N912\1+1Jr 1 S 729N+1
N+1 NN+ \&="
1 NN
- [Ny -S"gi ) .
N(N +1) ( gN+1 ZQ)

i=1

(%)

Following (14), we have ¢(N+1)—(N) > 0. This completes
the proof of (13) and therefore Proposition 1. [ ]
We note that in the D-LRT the equality o(N+1)—@(N) =
0 requires gn4+1 = % Zf\il g;. Such a circumstance can only
occur in the most unusual of circumstances (such as when
v = u). As such, in practice increases in N will effectively
always lead to an improvement in the D-LRT performance.
Proposition 2: In the D-LRT, any of the original measure-
ments can be selected as the reference measurement, and this
selection does not effect the performance of the D-LRT.
Proof: Suppose we select the 7-th measurement, instead
of the N-th one as the reference measurement. Following [9]

(14)
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we have

(Av—Au)" D' (Av—-Au)

N 1 N
= Z (gi - gT)Q - N Z (gi - gT)
| = =Tkt

i=1,i#T
Noting ¢g; — g = 0 for © = 7, following (6) we have
(Av—Au)" D' (Av—Au)

N L[ 2
Z (gi - 97)2 - N [Z (gi - g‘r)‘|

i=1
N A 2
Zgg N (Z: 9i>
=1 i=1

Based on (16) we can see that (Av—Au)’ D (Av—Au)
does not depend on 7. Following (11) and (12), we know the
detection performance of the D-LRT is not dependent on the
selection of the reference measurement, which completes the
proof of this proposition. ]

We note that although the theoretical performance of the
D-LRT does not depend on the selection of the reference
measurement, in practice this may not be always true. For
example, if the variance of the receiver noise is not identical
for all the measurements, selecting the measurement with the
minimum receiver noise as the reference measurement should
lead to the highest performance of the D-LRT. In addition,
considering quantization errors in practice, the selection of
the reference measurement may also effect the performance
of the D-LRT.

Having discussed that D-LRT can be simply posed as a
projection into a subspace (that projects out nuisance param-
eters), let us now discuss connections to our problem from
the viewpoint of QSP. Introducing the bosonic annihilation
and creation operators aj and dL, respectively, we can for-
mally introduce the quadrature operators ¢y = ax + dL and
pr = i(a' —ax) (here we have set h = 2). Introducing
the vector & = (§1,P1--.qn,,Dn, ) we have that in QM the
commutation relation

2

5)

(16)

[#i, ] = 2185

must be satisfied. The uncertainty principal arises fundamen-
tally from the need to satisfy such commutation relations.
It is straightforward to show how the above relations lead
naturally to the so-called ‘coherent states’ that describe laser
light. These states are the eigenstates satisfying a |a) = a|a)
and are given by

1 2 > a™
o) = exp (g of") 32 )

where |n) is the n-photon number (Fock) state. A quantum
measurement can in general be described by a set of projection
operators E;, which satisfy ZEJ E = 1. Given this, it is

K2
then possible to show that measurement of the quadratures

via heterodyne measurement is nothing other than a projection
into coherent states with E (o) = 7~ /2 |a) (al.

Clearly, we are already in a QSP scenario if we replace
these quantum projection operators with those arising from
the D-LRT. Further, our constraint V' + {2 > 0, mentioned in
the introduction arises fundamentally for the need to satisfy
the commutation relations mentioned above. For our needs
it is useful to note that another representation of the above
constraint V' + €2 > 0. This can be re-stated in terms of
the symplectic eigenspectrum {uk}ff;l (N,, being the number
of nodes under consideration). This spectrum can, in turn, be
determined simply as the standard eigenspectrum of the matrix
[iQ2V| . In this form the uncertainty principle can be re-stated
simply as v, > 1, for all k.

Given the obvious similarities between measurements
within the classical and quantum frameworks we take the next
step and hypothesize a new form of uncertainty that enters the
classical arena, by mimicking the mathematical constraint that
arises from the uncertainty principle in QM. This is explicitly
entered into our formalism through an additional constraint
on the matrix described by (7). We suggest this constraint
follows the similar one imposed on the covariance matrix of
CV Gaussian states, namely, v > Ky .

Note, that here we have relaxed this type of ‘uncertainty
principle’ by adding a new constant K. The value of this
constant is to be ‘learned’ by a neural network based LVS.

Detailed calculations and the determination of the neural-
network architectures required to support such LVSs is beyond
the scope of this introductory article. However calculations
along similar lines can be found in [11] where neural-network
architectures have been deployed with training curtailed by
theoretical constraints similar to those discussed here.

From a comparison of the discussions above with those
given in [11] (especially in relation to the overtraining prob-
lem), one can at least see how the introduction of the constraint
v > Kyn greatly simplifies the machine-learning process.
Training, relative to the training discussed in [11] becomes
greatly simplified, which in turn translates into simple neural-
network architectures that are easier to design and more
efficient to process.

VI. CONCLUSION

In this work we have introduced the notion of QSP into
the realm of classical location verification. Drawing parallels
between quantum measurement theory and likelihood ratio
tests, we have outlined how the concept of QSP may lead
to improved real-world LVSs that utilize machine learning as
a means to combat uncertain channel (and noise) conditions.
The simplicity of the constraint imposed through the QSP
framework leads to much simpler and therefore more efficient
LVS designs.
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