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ABSTRACT

Quantum computing ideally allows designers to build much
more efficient computers than the existing classical ones. By
exploiting quantum parallelism and entanglement, it is possi-
ble to solve signal processing tasks on high throughput data
coming from multiple sources. Random Vector Functional-
Link is a neural network model usually adopted in such con-
texts, although quantum implementations have not been con-
sidered so far. This paper proposes a quantum version of this
neural model, by introducing a specific learning algorithm to
find the coefficients of the adopted quantum gates and focus-
ing on the finite precision arithmetic imposed by the qubit
strings that are used to represent the model parameters.

Index Terms— Quantum neural network, Random Vector
Functional-Link, finite precision hardware, quantum learning

1. INTRODUCTION

In the general framework of quantum signal processing,
developing new or modifying existing signal processing al-
gorithms is carried out by borrowing from the principles
of quantum mechanics, with the addition of some of its in-
teresting axioms and constraints [1]. However, these novel
signal processing and machine learning techniques do not
inherently depend on the physics associated with quantum
mechanics itself, but several advantages are obtained as in
particular quantum parallelism, increased speed in learning
and processing, optimized memory usage, and so forth [2].

These quantum-inspired models and methods find appli-
cations in several fields such as, for instance, frame theory, pa-
rameter estimation, covariance shaping, and multi-user wire-
less communication systems. Also, there are some applicative
solutions in the information theory context, such as coding,
error correction and cryptography [3].

As a consequence of massive parallelism, quantum neu-
ral networks ideally represent much more efficient computing
systems than the existing classical ones [4, 5]. However, the
implementation of quantum neural networks deals with the
quantization of the model parameters, because of the digital
number representation associated with quantum bits or qubits.

Although some solutions have been proposed by generalizing
the concept of neuron to cope with quantum principles [6],
the direct quantization of coefficients on quantum architec-
tures with finite precision arithmetic leads to poor results due
to the nonlinear nature of the network [7].

Random Vector Functional-Link (RVFL) can be viewed
as a feed-forward neural network with a single hidden layer,
resulting in a linear combination of a fixed number of non-
linear expansions of the original input [8]. By solving the
general problem of data regression, RVFLs can be applied to
signal processing applications where function approximation,
classification or time series forecasting is required. So far,
only preliminary studies have been proposed for RVFL net-
works with limited hardware resources [9, 10].

In this paper, we introduce the realization of Quantum
RVFL (QRVFL) networks and a methodology to address the
challenging problem of model implementation with finite pre-
cision arithmetic. An optimization strategy based on a Ge-
netic Algorithm (GA) is introduced, in order to estimate the
inner parameters of the quantum gate array associated with
the QRVFL network under finite precision arithmetic.

2. QUANTUM RVFL NETWORKS

RVFL systems are feed-forward neural networks where the
inner layer is fixed a priori by using a predefined set of nodes.
Given a d-dimensional input x = [x1 . . . xd]

T , the scalar out-
put y ∈ R is obtained by a weighted sum of C nonlinear ker-
nels, called ‘functional links’, applied to the input:

f(x) =

C∑
m=1

βmhm(x;wm) . (1)

A sigmoid basis function h : Rd → R will be adopted:

h(x;w, b) =
1

1 + exp {−wTx+ b}
. (2)

Following this formulation the RVFL model is linear in
the parameters β, while the parameters w1, ...,wC are ran-
domly assigned once for all according to an uniform proba-
bility distribution. RVFL is proved to be a universal approxi-
mator if a large number C of functional links is adopted [11].
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To learn an RVFL model (1) is therefore equivalent to
a linear regression over the coefficients β = [β1 . . . βC ]

T .
This is obtained by considering a training set of N input-
output pairs {xi, yi}, i = 1 . . . N , and solving a regularized
least-squares (RLS) problem for which the optimal β is:

min
β∈RC

1

2
∥y −Hβ∥22 +

λ

2
∥β∥22 , (3)

where λ > 0 is a regularization factor, y = [y1 . . . yN ]T is
the vector of outputs and H is the so-called ‘hidden matrix’:

H =

h1(x1) · · · hC(x1)
...

. . .
...

h1(xN ) · · · hC(xN )

 . (4)

The learning problem (3) can be solved in a closed form,
as it is strictly convex, by the well-known solution:

β∗ =
(
HTH+ λI

)−1
HTy . (5)

In this paper, we propose the quantum implementation
QRVFL of such networks, where all the introduced parame-
ters and input/output values adopt the digital representation of
quantum computing based on strings of quantum bits (qubits).
Analog-to-digital conversion and parameter quantization can
be obtained by using a uniform quantizer qn(·) in the respec-
tive range of any variable, with a two’s complement binary
representation using n qubits. It is applied element-wise if
the input is either a vector or a matrix, using a same precision
n for any output of the network.

The quantized output h
(n)
m , m = 1 . . . C, of each func-

tional link can be rewritten as:

h(n)
m (x;w, b) = qn

(
1

1 + exp {−qn(wT )qn(x) + qn(b)}

)
, (6)

while the generic output for an n-bit finite precision imple-
mentation of a RVFL will be:

f (n)(x) = qn

(
C∑

m=1

β(n)
m h(n)

m (x;wm)

)
. (7)

Considering a quantum implementation, the generic input
x will be represented by a string |x⟩ of nd qubits, where each
block of n qubits represents the integer corresponding to the
quantized level of the jth input xj , j = 1 . . . d. In the same
way, the quantized output h(n)

m of each functional link (6) will
be represented by a string of n qubits. This means that any
quantum functional links will correspond to a Boolean map-
ping from nd-qubit to n-qubit strings.

As any Boolean function can be mapped onto a quan-
tum gate array [12, 13], the mth functional link of the
QRVFL will be represented by a unitary matrix such that
Um : |x,0n⟩ →

∣∣x, h(n)
m

⟩
. It is a 2n(d+1) × 2n(d+1) square

matrix for which the result of Um multiplied by a 2n(d+1)

column vector |x,0n⟩, representing a generic quantum state
in the 2n(d+1) space of |x⟩ tensored with n zeros, will be a
2n(d+1) column vector representing the quantum state of |x⟩
tensored with the result

∣∣h(n)
m (x)

⟩
. Each functional link is

generated randomly, as it depends on the random generation
of the hidden parameters w1, ...,wC and thus, all of Um,
m = 1 . . . C, can be generated randomly provided they will
respect the unitary matrix constraint.

Looking at (7), the finite precision RVFL in (7) is no
longer linear in the β(n) ∈ Z(n) parameters, where Z(n) rep-
resents here a generic set of integers which quantized β pa-
rameters can be assimilated to. In QRVFL, the quantized out-
put f (n)(x) will be an n-qubit string

∣∣f (n)(x)
⟩
, which is ob-

tained as a Boolean mapping of the functional links’ outputs.
Namely, a unitary 2n(C+1) × 2n(C+1) square matrix

B :
∣∣h(n)

1 , . . . , h
(n)
C ,0n

⟩
→
∣∣h(n)

1 , . . . , h
(n)
C , f (n)

⟩
can be defined, through which compute a 2n(C+1) column
vector containing the C outputs of functional links entangled
with the QRVFL output

∣∣f (n)
⟩
.

Given the training set {xi, yi} and the randomly generated
hidden matrices Um, the training of QRVFL will consist in
the determination of the unitary matrix B that can solve the
underlying Integer Least Squares (ILS) problem:

min
β(n)∈RC

1

2

∥∥∥y − qn

(
H(n)β(n)

)∥∥∥2
2
+

λ

2

∥∥∥β(n)
∥∥∥2
2

s.t. β(n) ∈ Z(n) .

(8)

ILS is a common problem in many fields of signal processing
as, for example, channel coding, cryptography, radar imaging
and global positioning [14, 15]. It has been shown that ILS is
an NP-hard problem and the algorithms for solving it have ex-
ponential complexity [16–18]. Nevertheless, the space of so-
lutions grows exponentially to a huge dimension, as a suited
number C of functional links should be used for obtaining
good approximation in spite of the relatively limited number
of qubits that can be used in actual quantum hardware. Conse-
quently, we propose an optimized training procedure, which
is based on a meta-heuristic approach using GAs, in order to
obtain a suited unitary matrix B to be adopted for quantum
hardware implementation of QRVFL networks.

3. GENETIC OPTIMIZATION

GAs are adaptive search algorithms that can solve both con-
strained and unconstrained optimization problems by mim-
icking the natural selection process of biological evolution
[19–21]. Any GA starts from a population of candidate solu-
tions, called individuals, and repeatedly modifies them in an
iterative process obtaining a succession of sets of individuals
(i.e., the generations). The population ‘evolves’ over succes-
sive generations, toward an optimal solution obtained by the
improvement of the fitness of the best individual.
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The GA starts from a generation of completely random
individuals and the successive generation is obtained through
the application of selection, mutation and crossover operators.
In each generation, the fitness of each individual is evaluated
and a new set of solutions is created from the current one.

The previously defined Boolean mapping associates a
string of n qubits with each of the 2nC possible inputs com-
ing from

∣∣h(n)
1 , . . . , h

(n)
C

⟩
; then, the search space has 2n2

nC

possible solutions. Any one of these solutions is associated
with (the first) 2nC columns of B, each one having all the
2n(C+1) entries set to 0 but one entry only set to 1. The
remaining 2n(C+1) − 2nC columns are don’t care and are
assumed in the following to have the same structure so as to
assure the unitary property. It is important to remark that,
despite the matrix dimensions can be very very large, the
sparsity of data allows for some compact representations and
cascaded quantum architectures, which will be considered
and investigated in future works.

The unitary matrix B we are searching for as a possible
solution is an individual of the population and its entries form
the so-called ‘chromosome’, which is a serialized vector of
22n(C+1) entries. More precisely, it is a sequence of 2n(C+1)

blocks, where each block has 2n(C+1) − 1 entries set to 0 and
one entry only set to 1, as illustrated in Fig. 1. Also in this
case, thanks to the evident sparsity, a compact and partitioned
representation of data will be adopted. Moreover, each indi-
vidual is admissible if and only if the corresponding matrix B
will be meet the following constraints:

• B is unitary;

• for any input
∣∣h(n)

1 , . . . , h
(n)
C

⟩
, the output obtained by

using B is tensored with the same input.

00…010…00 01…000…00 00…000...1000…001...00 …

2n(C+1) entries 2n(C+1) entries 2n(C+1) entries 2n(C+1) entries

22n(C+1) entries

Fig. 1. Chromosome associated with a B solution.

Given a dataset on which the GA optimization is being
performed, the randomized matrices Um are determined once
for all. Then, for each individual and in every generation, the
quantum output is computed for all inputs of the dataset by
using the particular instance of B associated with the chro-
mosome of the individual; this output will correspond to a
quantized output level in (7). The fitness of the individual
is the Noise-to-Signal Ratio (NSR), for which the lower the
NSR the better the fitness:

NSRdB = 10 log10

∑N
i=1

(
yi − f (n)(xi)

)2∑N
i=1 y

2
i

. (9)

The general steps of the GA can be summarized as:

1. A population of chromosomes G0 with P admissible
individuals is created and set as the current generation.

2. The chromosomes are evaluated by a defined fitness
function and sorted by ascending values of it. A penalty
is given to non-admissible individuals so that they will
be certainly replaced in the future generations.

3. Some chromosomes are selected from the current gen-
eration for performing genetic operations. Cloning,
mutations and crossover are applied and the produced
offspring replaces their parents in the next generation.

4. The next generation becomes the current one.

The steps 2-4 are repeated for a predefined fixed number
Mgen of generations. The goodness of the performance of
the algorithm relies on the values of P and Mgen as well as
on the mutation rate (Mr) and on the crossover rate (Cr). The
next generation Gk+1 is produced from the current one Gk in
Step 3 of the previous algorithm as in the following:

1. The last two individuals of Gk are deleted.

2. The best individual of Gk is guaranteed to survive to
the next generation, for that it is cloned and put in Gk+1

(elitism).

3. The algorithm selects a fraction equal to Mr of the mu-
tation rate to update the second individual of Gk by us-
ing a uniform function, then it is put in Gk+1.

4. A ‘Roulette Wheel’ procedure randomly selects a pair
of parents. A probability threshold Cr is used to pro-
duce the offspring of the two parents using a ‘one-
point’ crossover. Each of the two resulting individuals
is mutated by bit swapping with a probability equal to
Mr and placed in Gk+1. This step is repeated until the
next generation contains exactly P individuals.

The successive simulations will be performed by fixing the
following parameters: P = 100, Mgen = 100, Cr = 0.8, and
Mr = 0.01, while the evolutionary process is stopped if the
best fitness stalls for 5 consecutive generations within a rel-
ative interval of ±0.01%. The optimal solution found at the
end of the GA optimization will be denoted as Bgen.

4. EXPERIMENTAL RESULTS

In the following, we evaluate the performances of the pro-
posed QRVFL on four different public datasets summa-
rized in Table 1, which are available on the UCI repository
(https://archive.ics.uci.edu/ml/datasets.html).

The input and output values of datasets are normalized
before training in order to accommodate every feature in the
range between 0 and 1. The unitary matrices Um are gen-
erated randomly and, for simplicity, their columns are an or-
thonormal basis of the related quantum space with either 0
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Table 1. Detailed Description of Datasets

Dataset Features Instances Desired output

Airfoil 6 1503 Pressure level [22]
Concrete 9 1030 Compressive strength [23]
Energy 8 768 Heating Load [24]
Istanbul 8 536 Stock exchange returns [25]

Table 2. Optimal C Found by Inner-fold Cross-validation

Dataset n=4 n=6 n=8 n=10 float-64

Airfoil 200 200 200 300 500
Concrete 200 200 200 300 400
Energy 200 200 200 400 500
Istanbul 300 300 300 400 400

Table 3. Optimal λ Found by Inner-fold Cross-validation

Dataset n=4 n=6 n=8 n=10 float-64

Airfoil 210 29 28 2−3 2−10

Concrete 210 26 22 2−5 2−10

Energy 210 28 22 2−5 2−10

Istanbul 210 26 22 2−2 2−4

or 1 entries. The performance is obtained through a 10-fold
cross-validation, where the overall NSR is obtained compar-
ing actual values with the predicted ones in every fold.

Taking into account the actual evolution of quantum hard-
ware technology, four different values n of qubits are consid-
ered for the QRVFL implementation: 4, 6, 8, and 10. The per-
formance of such solutions is compared to the one obtained
by an RVFL implementation on standard computers using 64-
bit floating point arithmetic, which will be assimilated to the
analog result β∗ in (5) and the corresponding output in (1).

In order to compute the optimal number of hidden nodes
C and the regularization factor λ, we executed an inner-
fold cross-validation of the training data. Using a grid-
search procedure, we searched for the optimal C in the set
{200, 300, 400, 500} and the optimal λ as 2−j , j = −10,−9,
. . . , 9, 10. The optimal values of C and λ for every number
of qubits are reported in Table 2 and Table 3, respectively.

The results obtained by using the GA optimization, by us-
ing such choices of C and λ, are reported in Table 4. For every
dataset, the NSR for values using 10-qubit quantum gate ar-
ray is quite similar to the 64-bit floating point precision, with
differences as low as 0.2 dB and no grater than about 4 dB
for the Energy dataset. For a lower number of qubits the dif-
ference is more evident, although we are using a very strong
numerical quantization within the QRVFL network.

We report in Fig. 2 the comparison of actual and predicted
values of Energy dataset using a standard 64-bit floating point
hardware, while in Fig. 3 there is shown the GA optimization
using 8 qubits. Evidently, the behavior is comparable even
with a difference of more than 5 dB.

Table 4. NSR of Genetic Optimizer Vs. Qubit Precision

Dataset n=4 n=6 n=8 n=10 float-64

Airfoil -25.772 -26.022 -26.394 -28.875 -30.099
Concrete -7.879 -9.100 -11.476 -13.231 -15.350
Energy -10.755 -13.456 -18.568 -19.802 -24.098
Istanbul 1.364 -2.225 -6.221 -6.443 -6.698
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Fig. 2. Energy dataset using a 64-bit floating point RVFL.
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Fig. 3. Energy dataset using a 8-qubit QRVFL learned by GA.

5. CONCLUSION

In this paper, a quantum implementation of RVFL is proposed
and a GA is considered to find the coefficients of the unitary
quantum gates adopted in the QRVFL architecture. Exper-
imental results show that the performances obtained by the
GA optimization are close to floating point implementations
even using 8 qubits only for representing the network param-
eters. Future works might consider unitary matrices of quan-
tum gate arrays with complex valued entries, as for example
in the Hadamard, Ising and Deutsch quantum gates, so as to
consider the peculiarity of quantum rotations and other trans-
formations of entangled qubit strings.
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