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ABSTRACT

Traditional sampling involves encoding a signal through
(time, value)-pairs. In contrast, time encoding machines
(TEMs) characterize a signal by recording time points which
depend on the integral of the signal over time. We study
multi-channel TEMs where channels have shifted values for
their integrators. We show that M channels can enable re-
covery of bandlimited signals with M times the bandwidth
of that allowed in the single channel case. Moreover, our
recovery algorithm is linear, even when the shift between the
integrators of the TEMs is unknown. This is in stark contrast
to traditional multi-channel sampling, where complicated
non-linear methods are required to recover the unknown time
shift between channels.

Index Terms— Bandlimited signals, sampling methods,
signal reconstruction.

1. INTRODUCTION

Biology and engineers have arrived at two very different ways
to sample continuous signals. Whilst almost all human-made
systems are based on the idea of sampling a signal’s amplitude
at certain time points, in biology, a signal can be encoded
using the timings of action potentials generated by neurons.
Therefore, it is natural to wonder if we can design improved
sampling systems by taking inspiration from nature.

Traditional (time, value)-pair sampling is dominated by
uniform sampling of bandlimited signals [1]. More recently,
sampling results have been developed for other signal classes
such as general shift-invariant subspaces [2], unions of sub-
spaces [3], and signals of finite rate of innovation [4]. The
extension beyond uniform sampling includes results for ir-
regular samples [5], jittered samples [6], samples at unknown
locations [7, 8] and incomplete frequency samples [9]. Whilst
these results are of both theoretical importance and practical
interest, they diverge from the example set by biology.

Time encoding is a more neuromorphic approach to sam-
pling. In a nutshell, a neuron samples its input by integrat-
ing it (spatially and temporally) and emitting action potentials
when the integral reaches a threshold [10]. A time encoding

machine (TEM) also integrates the incoming signal and com-
pares the integral with a threshold [11]. Each time a threshold
is reached, time points are recorded, and these recordings are
comparable to action potentials emitted by neurons. TEMs
can be made even more biologically plausible by consider-
ing leaky integrate-and-fire neuron models with refractory pe-
riod [12] or even Hodgkin-Huxley neurons [13]; however, in
this paper, we consider a basic definition including a perfect
integrator with a reset operation.

In the traditional sampling setup, Papoulis extended Shan-
non’s theory to the multi-channel case by showing that, if a
bandlimited signal is input to M linear shift-invariant sys-
tems, perfect reconstruction is possible with 1/M times the
sampling rate per channel [14]. Likewise, it is interesting to
investigate how multiple TEMs (or neurons) can improve sig-
nal representation. In biology, it seems intuitive that multiple
neurons encode a signal better than one.

In this paper, we study the reconstruction performance of
multi-channel TEMs for bandlimited signals. In the single
channel case, reconstruction of bandlimited signals from time
encoding was studied in [11]. In a similar spirit to Papoulis,
Lazar et al. later considered multi-channel TEMs, where each
channel is prefiltered with a linearly independent filter before
time encoding [12, 15]. To reconstruct, each channel is in-
dependently decoded reproducing that channel’s post-filtered
continuous-time signal and, finally, these are combined to re-
produce the original signal.

In contrast, we consider multi-channel TEMs with an un-
known shift in their integrators. This is particularly relevant
in hardware and biology as it is normally not possible to per-
fectly align the channels. A similar problem occurs in tradi-
tional multi-channel sampling, where it is normally impossi-
ble to ensure each channel samples at the desired time-points.
To date, this has only been solved in special cases with com-
plex non-linear algorithms [16]. We show that, in the TEM
case, a linear reconstruction algorithm can recover bandlim-
ited signals sampled using multi-channel time encoding, even
if the inter-integrator shifts are unknown.

In the rest of this paper, we recap the basics of TEMs
and introduce the multi-channel setup. Then, we present a
reconstruction algorithm for two-channel time encoding and
finally generalize the results to the M -channel case.
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Fig. 1. TEM circuit. The input is biased and integrated un-
til the integral reaches a threshold. Once the threshold is
reached, a spike is created and the integrator value is reset2.

2. SINGLE-CHANNEL TIME ENCODING

Whilst this section summarizes results from [11], the TEM
setup we use differs slightly from the one put forward in [11].
In fact, if we assume no refractory period, our setup is equiva-
lent to the encoding scheme presented in [17]. As depicted in
Fig. 1, the proposed TEM has three parameters κ, δ, and b. It
takes as input a bounded signal x(t), such that |x(t)| ≤ c < b,
and outputs a spike train as follows: the machine adds b to its
input, scales the sum by 1/κ and passes the result through an
integrator. Once the integrator output reaches the threshold δ,
a spike is recorded and the value of the integrator is reset to
−δ. In other words, if a spike was recorded at tk, then the
next spike time tk+1 will satisfy

1

κ

∫ tk+1

tk

(x(u) + b) du = 2δ.

The spikes times tk, k ∈ Z will be used for signal reconstruc-
tion. An example of a TEM sampling is depicted in Fig. 2.

Assume that the input signal is a 2Ω-bandlimited signal;
i.e., its Fourier transform is zero for |ω| ∈ (Ω,∞). In [11],
Lazar and Tóth show that perfect reconstruction is possible if

Ω <
π (b− c)

2κδ
. (1)

To see why this is true, first note that the following inte-
grals can be computed from the trigger times:∫ tk+1

tk

x(u) du = 2κδ − b (tk+1 − tk) , (2)

where tk and tk+1 are any two consecutive trigger times.
Next, define the following reconstruction operator A:

Ax(t) =
∑
k∈Z

∫ tk+1

tk

x(u) du g(t− sk), (3)

where sk = (tk + tk+1) /2 and g(t) = sin(Ωt)/(πt).
One can then iteratively estimate x(t) as follows:

x0 = Ax, xl+1 = xl +A (x− xl) . (4)

By induction, one can show that the lth estimate is a partial
sum of a Neumann series: xl = A

∑l
k=0 (I − A)

k
x, which

converges to liml→∞ xl = AA−1x = x, if

‖I − A‖ < 1. (5)
2A similar figure appeared in [17].

Fig. 2. TEM processing of signal. From top to bottom, the in-
put signal, the biased signal input to the integrator, the output
of the integrator and the final output. The dashed lines in the
third figure mark the threshold δ and the reset level −δ.

Here, ‖.‖ denotes the operator norm.
The following lemma provides a bound for ‖I − A‖.

Lemma 2.1 (Lazar and Tóth 2004).

‖I − A‖ ≤ Ω

π
(sup (tk+1 − tk)) . (6)

Proof. The proof requires Bernstein’s and Wirtinger’s in-
equalities: see proofs of Lemmas 2 and 3 in [11].

To bound the separation between spike times, we recall
that |x(t)| ≤ c, which, when substituted into (2), yields

−c (tk+1 − tk) ≤ 2κδ − b (tk+1 − tk) ,

tk+1 − tk ≤
2κδ

b− c
. (7)

Together, these results lead to the following theorem.

Theorem 2.1 (Lazar and Tóth 2004). Assume x(t) is a 2Ω-
bandlimited signal that is bounded such that |x(t)| ≤ c. If
x(t) is passed through a TEM that has parameters such that
b > c and Ω satisfies (1), then

lim
l→∞

xl(t) = x(t). (8)

Proof. Combine Lemma 2.1 with (7) and the condition for
the convergence of Neumann series in (5).

Therefore, in the case of a bandlimited signal with band-
width 2Ω, an iterative reconstruction algorithm can guarantee
convergence to the original signal, given that the parameters
of the TEM satisfy (1).

A closed form solution for the problem can also be de-
vised. First, let G be the operator defined as

Gy =
∑
k∈Z

ykg(t− sk).
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In addition, define q =
[∫ tk+1

tk
x(u) du

]
k∈Z

, and H =

[Hlk]l,k∈Z =
[∫ tl+1

tl
g(u− sk) du

]
l,k∈Z

. Then, one can write

x(t) = GH+q where H+ is the pseudoinverse of H. We
refer the reader to [11] for a proof.

3. MULTI-CHANNEL TIME ENCODING

Consider two TEMs A and B, with the same parameters κ,
δ, and b. At first sight, it seems that A and B will output the
same encoding of an input signal x(t). However, consider a
scenario where the integrator of A is always α 6= 0 ahead
of the integrator of B (modulo 2δ). Then, the threshold is
reached at different times in the two machines. Therefore,
the recorded spike times of x(t) are different and the overall
encoding of the signal is different.

Intuition tells us that we can probably gain more informa-
tion about x(t) by considering the outputs of both machines.

More generally, our multi-channel time encoding setup
assumes that a bandlimited signal is passed throughM TEMs
which are shifted with respect to each other with shifts αi.

We will show that reconstruction of a 2Ω-bandlimited sig-
nal is possible if

Ω <
π(b− c)
κᾱ

, (9)

where ᾱ is the maximum shift between any two adjacently
spiking machines. For such cases, we will provide a recon-
struction algorithm which does not need to know the αi’s.

Using M TEMs to encode a bandlimited signal, one can
reconstruct a signal with bandwidth which is M times larger
than in the single channel case, when αi = ᾱ = 2δ/M, ∀i =
1 · · ·M . In future work, we hope to show that the bandwidth
can always be reduced byM no matter the values of the shifts
(as long as they are nonzero).

Practically, this result indicates that multi-channel sam-
pling and reconstruction using TEMs does not require the
precise setting, or even knowledge, of inter-integrator shifts.
Moreover, clock synchronization, which poses an issue in
multi-channel amplitude sampling, can be entirely bypassed
here because the outputs of all the TEMs can be summed (in
hardware) into one final spike train. This spike train is fed
as input to the decoding machine (see Fig. 3). We will de-
rive a reconstruction algorithm assuming two channels with
unknown shift by first assuming the shift is known and then
rearranging our reconstruction operator. Then, we extend this
to the M -channel case with unknown shifts.

3.1. Two-channel time encoding and decoding

Assume we have two shifted machines A and B encoding the
same signal and suppose, without loss of generality, that B’s
integrator is α1 ahead of A’s (modulo 2δ). It follows that A’s
integrator is α2 = 2δ − α1 ahead of B’s (modulo 2δ), and
that the spikes of A and B are interleaved in time: there will

Fig. 3. Multi-channel time encoding and decoding. The sig-
nal goes through different TEMs, the outputs of which are
combined through an adder and fed into one time decoding
machine (TDM) which reconstructs the signal.

always be one spike from B between any two spikes of A,
and vice versa. Let the indices of the spike times be such that
t
(A)
k < t

(B)
k , ∀k ∈ Z, where t(A)

k and t(B)
k denote, respec-

tively, the spike times emitted by machines A and B.
The integral of the signal between any pair of consecutive

spike times will satisfy∫ t
(B)
k

t
(A)
k

x(u) du = κα1 − b(t(B)
k − t(A)

k ), (10)

∫ t
(A)
k+1

t
(B)
k

x(u) du = κα2 − b(t(A)
k+1 − t

(B)
k ). (11)

If we now combine and order the spike times t(A)
k and t(B)

k

into one set of spike times
{
t̃k : k ∈ Z

}
, then we can bound

the separation between any pair of spikes, just like we did in
the single channel case. In particular, substituting |x(t)| ≤ c
into (10) and (11) yields

t
(B)
k − t(A)

k ≤ κα1

b− c
and t

(A)
k+1 − t

(B)
k ≤ κα2

b− c
,

respectively. Setting ᾱ = max(α1, α2) gives

t̃k+1 − t̃k ≤
κᾱ

b− c
. (12)

We can therefore define the same reconstruction operator
as in (3), but taking into account the new combined set of
spike times

{
t̃k : k ∈ Z

}
, with corresponding midpoints s̃k:

Ax(t) =
∑
k∈Z

∫ t̃k+1

t̃k

x(u) du g(t− s̃k). (13)

Since the integrals in (13) are over the intervals [t̃k, t̃k+1],
computing them requires knowledge of the αi’s. To remove
this dependence, define fl(t) =

∑
k<l (−1)

k−l
g (t− s̃k) , l ∈

Z, so that g(t− s̃k) = gk(t) = fk(t) + fk+1(t). Then,

Ax(t) =
∑
k∈Z

∫ t̃k+1

t̃k

x(u) du (fk(t) + fk+1(t))

=
∑
k∈Z

∫ t̃k+2

t̃k

x(u) du fk+1(t). (14)
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Notice that, since
∫ t̃k+2

t̃k
x(u) du = 2κδ − b

(
t̃k+2 − t̃k

)
, the

operatorA can now be applied without knowing the shifts αi.
Lemma 2.1 still holds for A, and, as before, the iterative

algorithm converges if ‖I − A‖ < 1. Therefore, one can
reconstruct the bandlimited signal if (9) is satisfied.

As for the closed form solution, following the treatment
in [11], we can write

x(t) = GB−1
(
BHB−1

)+
Bq, (15)

where G, H, and q are as defined before (changing tk to t̃k),
and B = [Bkl]k,l∈Z where Bkl = 1 if k = l or k = l + 1
and zero otherwise. Note that, here, Bq is computed as one
vector, which does not require the knowledge of the αi’s.

We have thus found both a recursive and a closed form
solution for the estimation of a signal from spike times ob-
tained from two TEMs with an unknown nonzero shift, and
have shown that the bandwidth bound is now inversely pro-
portional to the shift ᾱ (where δ ≤ ᾱ < 2δ). Thus, in the
ideal machine spacing, two channels can perfectly reconstruct
a signal that has double the bandwidth as that allowed in the
single-channel case. This occurs when α1 = α2 = δ.

3.2. M-channel time encoding and decoding

We can extend the above algorithm to the case of M -channel
time encoding. Let A1, · · · , AM be TEMs encoding the same
signal, ordered such that t(Ai)

k < t
(Aj)
k , ∀k ∈ Z if i < j. They

have the same parameters κ, δ, and b, and the inter-integrator
shifts α1, α2, · · · , αM correspond, respectively, to the shifts
between A1 and A2, A2 and A3, · · · , and AM and A1.

Let
{
t̃k : k ∈ Z

}
be the combined and ordered spike

times from all machines, and ᾱ = max1≤i≤M αi. Now let A
be defined as in (13). As in Section 3.1,A can be rewritten as

Ax(t) =
∑
k∈Z

∫ t̃k+M

t̃k

x(u) du fk+M−1(t), (16)

where fl(t) is such that g(t − s̃k) =
∑k+M−1

l=k fl(t). Now
define B = [Bkl]k,l∈Z and Bkl = 1 for k = l + i where i =
0, · · · ,M − 1, and 0 otherwise. The closed form estimation
for the original signal is then done as in (15).

Let xl(t) be the lth estimate of x(t) obtained using the
recursive algorithm from (4), based on the operatorA in (16),
then we have the following theorem.

Theorem 3.1. Assume x(t) is a 2Ω-bandlimited signal that
is bounded such that |x(t)| ≤ c. If x(t) is passed through an
M -channel TEM that has parameters such that b > c and Ω
satisfies (9), then

lim
l→∞

xl(t) = x(t). (17)

Proof. Our operator in (16) performs the same operation as
the one defined in (3), substituting tk for t̃k.

Fig. 4. Reconstruction success when M = 1, 2 and 6
channels with ideal inter-integrator shifts encode a signal
as its bandwidth 2Ω varies. The Ω axis is plotted in log
scale. Success is based on having a low normalized mean
squared error when averaged over 2000 randomly generated
2Ω-bandlimited signals.

We recall that our recursive algorithm using operator
A converges if ‖I − A‖ < 1 and that Lemma 2.1 places
a bound on this norm. Therefore, we only require the
right-hand side in (6) to be less than 1. To show that this

holds if (9) is true, we note that
∫ t

(Ai+1)

k

t
(Ai)

k

x(u) du = καi −

b
(
t
(Ai+1)
k − t(Ai)

k

)
, if 1 ≤ i < M , and

∫ t
(A1)

k+1

t
(AM )

k

x(u) du =

καM−b
(
t
(A1)
k+1 − t

(AM )
k

)
, so that we can bound t̃k+1− t̃k ≤

κᾱ/ (b− c) .

We have thus shown that using M -channel time encoding
can allow us to encode a signal with M times the bandwidth
as that allowed in the single channel case. This occurs when
all channels have integrators which are equally spaced, i.e.
ᾱ = 2δ/M = αi, ∀i = 1, · · · ,M .

We illustrate, in Fig. 4, the improvement of signal recon-
struction as the number of channels increases. We generate
signals with bandwidth 2Ω by summing cosines of random
amplitudes and random frequencies contained within the
allowed bandwidth. We reconstruct the signals using M -
channel TEMs forM = 1, 2, 6. We then compute the average
of the mean squared error normalized by the signal energy.
If this normalized average is below 10−3, reconstruction is
deemed successful, otherwise it is deemed unsuccessful.

4. CONCLUSION

We have explored both iterative and closed-form algorithms
for the recovery of bandlimited signals encoded using M
TEMs, and showed that the inter-integrator shifts do not need
to be known. We showed that the reconstructible bandwidth
can scale by a factor of M when moving from the single
channel case to the M -channel case.

In future, we believe that we can show that this scaling
factor is actually independent of the shifts between the ma-
chines (as long as they are nonzero), and hope to study recon-
struction stability when the unknown shifts approach zero.
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