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ABSTRACT

This work presents an event-driven acoustic sensor processing
pipeline to power a low-resource voice-activated smart assistant.
The pipeline includes four major steps; namely localization, source
separation, keyword spotting (KWS) and speaker verification (SV).
The pipeline is driven by a front-end binaural spiking silicon cochlea
sensor. The timing information carried by the output spikes of the
cochlea provide spatial cues for localization and source separation.
Spike features are generated with low latencies from the separated
source spikes and are used by both KWS and SV which rely on
state-of-the-art deep recurrent neural network architectures with a
small memory footprint. Evaluation on a self-recorded event dataset
based on TIDIGITS shows accuracies of over 93% and 88% on
KWS and SV respectively, with minimum system latency of 5ms
on a limited resource device.

Index Terms— silicon cochlea spikes, event-driven auditory
processing, DNN, keyword spotting, speaker verification

1. INTRODUCTION

The demand for personalized voice-activated devices has rapidly
grown in recent years. Along with this, we see increasing research
in algorithms useful for these devices such as speaker verification
(SV), and keyword spotting (KWS) [1, 2, 3].

Given that portable devices have limited memory and compu-
tational resources, algorithms that are cheap to compute and have
a low memory footprint are preferred. For this reason, much effort
has been focused on the use of small models that can be efficiently
implemented on these devices [4, 5, 6, 7].

Two other major considerations for voice-activated devices are
first, the ability to operate robustly in challenging noisy and multi-
talker environments; and second, to provide low-latency responses
to the user [8, 9, 10].

These requirements fit well with the advantages that can be
offered by an event-based front-end low-power silicon audio sensor
such as the Dynamic Audio Sensor (DAS) [11, 12] which im-
plements an abstract model of the biological cochlea and outputs
asynchronous and precisely timed events (< 1µs) at low laten-
cies [13]. The DAS output spike streams have been used to drive
low latency localization solutions together with the separation of
the spike streams produced by competing talkers [14, 15]. These
previous studies show that it is possible to simultaneously localize
multiple speakers, separate their spike streams, and estimate the
speech envelope of an individual speaker from the separated spike
streams. The DAS cochlea has also been used in ASR tasks such
as speaker identification [16], speech recognition [17], and voice
activity detection [18].
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Fig. 1. Experimental setup of the recordings. The microphones are
on the cochlea system. Speakers are played from one of the 7 loud-
speakers.

This work presents a full pipeline for use in a voice activated
smart assistant device with a front-end spiking cochlea. The pipeline
consists of four sequential steps, namely, localization of simultane-
ously active speakers, speech separation, KWS and SV. This paper
will demonstrate how the sparsity of the DAS events and the result-
ing features allow for models with a low memory footprint, low com-
putational complexity and low-latency system response, thus pro-
viding a compelling alternative to standard solutions. The paper is
structured as follows: Section 2 describes the methods and models,
Section 3 describes related work, Section 4 presents results of the
pipeline on a particular dataset and performance of the models when
deployed on a limited resource device. Section 5 concludes the work.

2. METHODS

2.1. Recordings and dataset

The front-end sensor is the binaural spiking silicon cochlea or Dy-
namic Audio Sensor (DAS) system [11]. It has two independent
64-stage cascaded filter banks driven by two microphones. Each
cascaded filter bank models the basilar membrane, inner hair cells,
and spiral ganglion cells of the biological cochlea. The sensor details
are described in [11, 12]. The frequency selectivity of the cochlea
channels ranges from 100Hz to 10 kHz.

The DAS system [11] can be driven by the on-board micro-
phones or from the computer through the on-board audio jacks. In-
stead of doing recordings in a specific room, in this work, we obtain
microphone recordings by simulating the room impulse response
(RIR) between each source and each microphone calculated based
on the image method [19]. The microphone recordings from the
simulated environment are then played to the DAS from the com-
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puter. The simulated room has dimensions of 5 × 5 × 5m3 and no
reverberation (i.e. T60 = 0). The microphones which are spaced
20 cm apart, are placed in the center of the room. Even though a 3D
environment is simulated, this work only considers azimuthal local-
ization using speakers that are distributed in a semicircle with a 2m
radius and are separated by 30◦ (see Fig. 1).

The recordings are based on the full TIDIGITS dataset [20]
which consists of a series of spoken digit sequences and single
digits. Each sample in the recordings consists of a mixture of the
speech from two speakers in different positions. The mixtures are
created by randomly selecting two speakers for each sample, and
then using one random utterance for each chosen speaker. The list
of utterances together with the spiking dataset is available for down-
load [21]. Note that the original waveforms cannot be provided but
the dataset is fully reproducible with the list of utterances. The code
for creating the mixtures and the random impulse responses is also
available.

The recordings include 6000 samples for training and 2000 for
testing with 225 different speakers. The speakers are divided equally
between males and females. The average number of sentences per
speaker is 70 while the minimum and maximum sentences are 22
and 132 respectively. the framework provides the possibility for in-
creasing the dataset size to fit any task requirement.

2.2. ITDs and probabilistic model

This work builds on top of the work presented in [14], where the
authors used a binaural cochlea to localize concurrent speakers and
showed how each spike can be assigned a probability of being pro-
duced by one of the speakers. Their approach uses the interaural time
difference (ITD) between cochlea events from the two microphones
(ears) in order to localize a sound source. If a sound triggers an
event in one microphone, it will trigger a similar event in the second
microphone with a delay that depends on the position of the source
with respect to the microphones.

In short, given the kth event ek at time tk, from frequency chan-
nel ck and at the ear rk: ek = [tk, ck, rk], the ITD is estimated
by computing the time difference between ek and the closest event
from the opposite ear in the corresponding (same) frequency channel
ck. Note that only windows of maximal ITDs of 600us are consid-
ered, given by the 20cm distance between the two microphones. In
previous work, only a limited subset of frequency channels in [14]
are considered for localization. In the next subsection, we present a
method that allows us to use more of the frequency channels.

The extracted ITDs drive a probabilistic Bayesian model that is
used to track the positions of the speakers. A Hidden Markov Model
is used to estimate the posterior probability of the position of the
speaker given an ITD value as an observation. This algorithm is also
known as Bayes Filter or Recursive Bayes Estimation.

Once probability distributions have been estimated for each
spike, the maximum a posteriori (MAP) criterion is used to assign
each spike to one of the sources.

2.3. Channel-wise delay correction

In [14], a considerable amount of spikes were discarded because of
the underlying discrepancies of extracted ITDs created by the known
mismatch of analog DAS circuits produced from the silicon fabrica-
tion process.

The authors only used the few cochlea channels that produce the
expected ITD values without any calibration on the DAS outputs.
A low number of spikes attributed to each speaker is not a problem
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Fig. 2. Algorithm for ITD distribution correction for different
cochlea channels. Left, example of ITD distributions and fitted
Gaussian curves for a sound source at 90◦. Note that the peak is
shifted differently for each channel. Right, prior distribution in 3
cases: (top) after correction, (center) before correction, (bottom) be-
fore correction only if channel 19 is considered.

for envelope reconstruction, (e.g. in [14]), but it is a concern when
trying to use spike features for more complex tasks such as speech
recognition. For this reason, we use a delay correction algorithm
here so we can use more cochlea channels for calculating the ITDs
and then assigning these spikes to the probable locations.

Figure 2 shows the ITD histograms for a subset of cochlea chan-
nels responding to a stimulus positioned at 90◦ corresponding to zero
delay between the two ears. Clearly, the ITD distributions for dif-
ferent channels have peak values different from zero. As shown in
Fig. 2 (left column), an ITD histogram is created for each channel
corresponding to a stimulus at 90◦, then a Gaussian fit to this empir-
ical distribution provides an estimated mean. This estimated mean
shift can thus be applied to correct the ITD for any new sample. The
right column of Fig. 2 shows how the priors change after the cor-
rection. The bottom panel shows the non-corrected ITD for channel
19, the central panel shows the non-corrected ITD for all channels
while the top panel shows the combined ITD from all channels after
correction. The number of spikes that can be used for assignment
after the correction step, increases by a factor of 20.

2.4. Spike separation and spike features

In the scenario provided by the recorded dataset, multiple speakers
can be active at the same time. The first step of the pipeline is to
assign each spike to one of the speakers. As shown in [14, 15], one
can use the output of the probabilistic model to assign to each spike,
the probability of having being generated by one of the speakers in
the possible positions. When a MAP criterion is applied to these
posterior probabilities, it is possible to retrieve most of the spikes
generated by each speaker. The separated spikes can be used, e.g.,
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for reconstructing the power envelope of the speech of a speaker.
In this work, the separated spike streams will be used as input to a
system for SV and KWS.

The spike features (shown in Fig. 3, top left panel) are a key part
of the pipeline. They are easy to compute and need to carry useful
information to complete all the tasks in the pipeline. The features
used in this work are spike counts with a window of 5ms [22] fol-
lowed by a logarithmic compression. These features are similar to
log-filterbank features commonly used for state-of-art speech recog-
nition systems.

2.5. Speaker verification

Customization is an important part of every smart system that is de-
ployed in the real world. For smart assistants, SV is crucial in sce-
narios where multiple users share the same assistant. While the use
of voice as a security measure is still under debate, it can be used by
the smart assistant to redirect queries to different accounts based on
different users’ settings.

In this scenario, a SV system has to be able to work with a few
voice samples from the users. Therefore, we use the spike features
within a one-shot learning framework for this task. One successful
method used in one-shot learning tasks employs a neural network ar-
chitecture known as a Siamese network [23]. The network is trained
to distinguish between samples from the same class or from differ-
ent classes. This training is done by feeding both samples through a
common part of the network and then letting the final layer decide if
the encoded inputs are from the same class or from different classes.
The common part of the network in this work is implemented by 2
stacked gated recurrent units (GRU) [24] layers with 220 units per
layer and a fully-connected layer with 128 units and sigmoidal ac-
tivation. Dropout with 0.3 probability is applied between the two
GRU layers. Finally the L1 difference between the two encoded
samples is used to drive a fully-connected layer with a single output
unit and a sigmoidal activation. The role of this final unit is to en-
code the probability that the two samples belong to the same class.
Note that this network has only 900 k parameters, a memory foot-
print of 3MB. Because of this, only a few milliseconds are needed
to compute all layers during inference and can be run in real time
because only unidirectional GRU layers are used.

2.6. Keyword spotting

Smart assistants are usually activated by a wake word [4]. To en-
sure that the wake word is always spotted, the system needs to con-
stantly run a detection algorithm. For this reason, low-power and
low-compute cost solutions to this problem are needed especially for
portable devices. This work aims to use the separated spike streams
to address this problem. The spike streams are ideal for this task
because they are generated with low latencies; and in addition, they
are sparse and asynchronous.

For this task, the keyword consists of a digit between 0 and 9.
The sequence is marked with a flag every time the wake word is
present. The model has to detect if the keyword appears in the sen-
tence. The model used for this task is a recurrent neural network
consisting of 3 stacked GRU layers. The network is trained with
connectionist temporal classification (CTC) [25] to output either a
blank symbol or the presence or absence of the wake word. The
model has roughly 900 k parameters and a memory footprint of less
then 3MB. Similar to the SV network, it uses only unidirectional
layers and can thus be used in real time.
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Fig. 3. Example of reconstructed spike features after the localiza-
tion; and subsequent steps of separation and spike assignment. (a)
and (b) show respectively the two separated spike streams from each
speaker, utterances are ’00’ and ’140’. (c) probability distribution
for localization; the two local maxima indicate the positions of the
two speakers. (d), (e) and (f) log-filterbank features of speaker 1,
speaker 2, and the mixture respectively.

3. RELATED WORK

This work builds on top of [14, 15]. It uses the same localization
and spike stream separation methods. Nevertheless, this work in-
troduces a new method to increase the number of spikes assigned
to each stream which is key for SV and KWS. Prior work where
cochlea spikes are also used for a speaker identification task [16],
differs in that it uses a support vector machine (SVM) classifier and
a small dataset. It did not include testing on unknown speakers which
we address here. Prior work also reported a speech recognition task
using a recorded spike-based TIDIGITS dataset [22]. Here, we ad-
dress the problem of keyword spotting in a more challenging setting
with competing talkers. Recent studies tackle KWS for both efficient
computation [4] and small footprint [6, 7], while not many studies
address these problems in the context of SV [3, 2]. Efforts exist for
either jointly solving both tasks [5] or solving a single task in the
presence of background noise [10]. In contrast, this work proposes a
solution that jointly solves both tasks in the harder scenario of com-
peting talkers. It also leads to a low-latency response because of the
use of event-based features.

4. EXPERIMENTAL RESULTS

4.1. Localization and spike separation

The probabilistic approach in [14] is used to estimate the locations
of the speakers. The spikes assigned to those locations represent the
speech of the corresponding speaker. Figure 3 shows an example of
this part of the pipeline. Panel c shows the two local maxima in the
distribution indicating the true location of the speakers, while panels
a and b show the separated spike stream features. Notice how these
features vaguely resemble the corresponding log-filterbank features
calculated on the ground truth separate audio waveforms. The local-
ization algorithm finds the correct speaker positions in 85% of the
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cases. Of the remaining 15%, 10% belong to the cases where the
position is off by 30◦. In the remaining cases, the streams do not
correlate well with the speech of the target speaker.

4.2. Speaker verification

The Siamese network described in Section 2.5 was trained on 200
speakers and tested on 25 unknown speakers. The results are sum-
marized below and the standard deviations are obtained by training
the model on different datasets where speakers for train and test are
shuffled. Results are given in terms of equal error rate (EER) and ac-
curacy in a 2-way one-shot learning task. The one-shot learning task
consists of pairs of one positive and one negative example in which
the outcome is successful if the probability for the positive sample is
higher then the probability for the negative one.

The presented model achieves 78.5 ± 2.3% accuracy on a 2-
way one-shot learning task, while typical state-of-the-art results are
around 90% [5]. This is due to both the limited size of the network
and the limited size of the dataset. Fortunately, the accuracy can be
increased by fine tuning the network, that is, retraining the network
with a small number of samples from the new speakers. The model
achieves an accuracy of 80.3± 2.5, 84.6± 1.9 and 88.2± 1.5 after
fine tuning with 1, 3 and 5 samples respectively from the new speak-
ers. Equivalently, the EER decreases from 23.2± 2.1 to 13.5± 1.9
when fine tuning the network with 5 samples from the new speakers.
The results can be improved by using a dataset with more speakers.

4.3. Keyword spotting

The model receives as input a sequence of spoken digits and should
output the presence or absence of the keyword. Note that this is not
a simple binary classification task since the model has to detect both
the presence and the position of the word in the sequence. Although
CTC does not provide precise alignment of words, it gives enough
temporal precision to activate the system with little latency. Tests
were carried for the 10 different keywords in the dataset.

The results are reported in terms of the F0.5 scores which ac-
count more for loss in precision then recall. Ideally, such a system
should avoid false positives as these activate the more costly parts.
The results, as reported in Table 1, show clearly the statistical differ-
ences between F0.5 and precision for different keywords. Note that
only the best digits were reported. This is due to the spectral compo-
sition of the phonemes of the digits, therefore, some digits are easier
to recognize then others. These results contrast with the ones ob-
tained with more standard log-filterbank features which in this task
obtain an accuracy of around 99%. They are also in contrast with the
results obtained on the same task using spike features from a single
speaker scenario which obtains an accuracy of roughly 97%. This
loss in accuracy is due to the separation step of the pipeline that re-
duces conspicuously the number of spikes used by the recognition
model. The loss of spikes reduces the quality of the spike features,
thus the decrease in accuracy. In particular, the separation step of the
pipeline reduces by 80% the number of spikes that are used to create
the spike features with respect to the spikes produced by the sensor.

4.4. Resource requirements

It is important to note that the recurrent models we used are uni-
directional and thus they allow for real-time computation. More-
over, both models have very small number of parameters therefore
needing a low memory footprint and allowing fast inference. In ad-
dition, the spike features allow for low latency system responses.

Table 1. KWS results. Precision, recall and F0.5 scores with mean
and standard deviation obtained from 3 different initializations.

Keyword Precision Recall F0.5

1 0.88± 0.01 0.92± 0.05 0.89± 0.02
2 0.89± 0.01 0.68± 0.02 0.83± 0.05
4 0.93± 0.02 0.78± 0.01 0.90± 0.01
5 0.93± 0.02 0.78± 0.02 0.89± 0.01
7 0.91± 0.01 0.80± 0.01 0.88± 0.01
8 0.87± 0.04 0.58± 0.05 0.79± 0.04
9 0.90± 0.01 0.78± 0.02 0.77± 0.01

To demonstrate the usability of these models in a real-time system,
they were deployed on WHISPER [26], a real-time general pur-
pose multi-channel audio platform with an ARM core, specifically
a Raspberry Pi 2 Model b that features a 900 MHz quad-core ARM
Cortex A7 and 1 GB of RAM.

Our proposed model for KWS is competitive with state-of-the-
art models, e.g. [4, 5, 6]. It uses spike count frames that only incur
a feature computation delay of 5ms while more traditional meth-
ods that use log-filterbank features usually incur a feature computa-
tion delay of 30 − 40ms. Moreover, the algorithmic latency intro-
duced by the number of frames needed to drive the model is between
100−200ms for traditional approaches whereas the latency for this
model is just 5ms since only one frame per step is needed by our
model. By running the model on the Raspberry Pi, we obtain a com-
putation time of 974±0.14ms to process 300 frames corresponding
to 1500ms of real time data. From this we can extrapolate that each
frame takes about 3ms to be processed and thus can allow for real
time computation with a latency of 5ms. Since the SV model has a
similar architecture, we can assume that the system latency will also
be small.

The memory footprint of the entire system is 6 MB. It comprises
the stored ITD priors for the localization model, and the weights
for both models. In terms of hardware implementation, the system
only needs an accumulator and a look-up table for the logarithmic
compression in order to compute the spike features. It also bypasses
the more costly computation of frequency-domain filtering for both
feature computation and signal enhancement. Furthermore, the data-
driven nature of the spikes is useful for hardware accelerators such
as [27] that can skip computations if there is no input.

5. CONCLUSION

We present a novel low-resource extensive acoustic pipeline for a
voice-activated smart assistant that uses as front end, an event-based
low power audio sensor. The pipeline steps include localization and
source separation of the target speaker along with keyword activation
and speaker verification. Even though the performances on the single
tasks are not at the level of state-of-the-art approaches, the pipeline
provides multiple advantages including reduced system latency and
computational cost. Further improvements in recognition rates can
be obtained with the use of a larger dataset.
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