
MULTICHANNEL SPARSE BLIND DECONVOLUTION ON THE SPHERE

Yanjun Li, Yoram Bresler

CSL and Department of ECE, University of Illinois at Urbana-Champaign

ABSTRACT

Multichannel blind deconvolution is the problem of recovering an
unknown signal f and multiple unknown channels xi from convolu-
tional measurements yi = xi ~ f (i = 1, 2, . . . , N ). We consider
the case where the xi’s are sparse, and convolution with f is invert-
ible. Our nonconvex optimization formulation solves for a filter h
on the unit sphere that produces sparse output yi ~ h. Under some
technical assumptions, we show that all local minima of the objec-
tive function correspond to the inverse filter of f up to an inherent
sign and shift ambiguity, and all saddle points have strictly negative
curvatures. This geometric structure allows successful recovery of
f and xi using a simple manifold gradient descent algorithm with
random initialization. Our theoretical findings are complemented by
numerical experiments, which demonstrate superior performance of
the proposed approach over the previous methods.

Index Terms— Manifold gradient descent, nonconvex opti-
mization, Riemannian gradient, Riemannian Hessian, strict saddle
points, super-resolution fluorescence microscopy

1. INTRODUCTION

Blind deconvolution, which aims to recover unknown vectors x and
f from their convolution y = x ~ f , has been extensively studied,
especially in the context of image deblurring [1, 2, 3]. Recently,
algorithms with theoretical guarantees have been proposed for single
channel blind deconvolution [4, 5, 6, 7, 8, 9, 10]. In order for the
problem to be well-posed, these previous methods assume that both
x and f are constrained, to either reside in a known subspace or be
sparse over a known dictionary. However, these methods cannot be
applied if f (or x) is unconstrained, or does not have a subspace or
sparsity structure.

In many applications in communications [11], imaging [12], and
computer vision [13], convolutional measurements yi = xi ~ f are
taken between a single signal (resp. filter) f and multiple filters
(resp. signals) {xi}Ni=1. We call such problems multichannel blind
deconvolution (MBD). Importantly, in this multichannel setting, one
can assume that only {xi}Ni=1 are structured, and f is unconstrained.
While there has been abundant work on single channel blind decon-
volution (with both f and x constrained), research on MBD (with
f unconstrained) is relatively limited. Traditional MBD works as-
sumed that the channels xi’s are FIR filters [14, 15, 16] or IIR fil-
ters [17], and proposed to solve MBD using subspace methods. The
problem is generally ill-conditioned, and the recovery using the sub-
space methods is highly sensitive to noise [18].

In this paper, while retaining the unconstrained form of f , we
consider a different structure of the multiple channels {xi}Ni=1:
sparsity. The resulting problem is termed multichannel sparse blind
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deconvolution (MSBD). The sparsity structure arises in many real-
world applications, including opportunistic underwater acoustics
[19], reflection seismology [20], functional MRI [21], and super-
resolution fluorescence microscopy [22].

Previous approaches to MSBD have provided efficient iterative
algorithms to compute maximum likelihood (ML) estimates of para-
metric models of the channels {xi}Ni=1 [19], or maximum a pos-
teriori (MAP) estimates in various Bayesian frameworks [20, 13].
However, these algorithms usually do not have theoretical guaran-
tees. Recently, guaranteed algorithms for MSBD have been devel-
oped. Wang and Chi [23] proposed a convex formulation of MSBD
based on `1 minimization. Li et al. [24] solved a nonconvex formula-
tion using projected gradient descent, and proposed an initialization
algorithm to compute a sufficiently good starting point. However,
the theoretical guarantees of these algorithms require restrictive as-
sumptions (e.g., f has one dominant entry that is significantly larger
than other entries [23], or f has an approximately flat spectrum [24]).

In this paper, we consider MSBD with circular convolution. In
addition to the sparsity prior on the channels {xi}Ni=1, we impose,
without loss of generality, the constraint that f has unit `2 norm,
i.e., f is on the unit sphere. (This eliminates the scaling ambiguity
inherent in the MBD problem.) We show that our sparsity promot-
ing objective function has a nice geometric landscape on the the unit
sphere: (S1) all local minima correspond to signed shifted versions
of the desired solution, and (S2) the objective function is strongly
convex in neighborhoods of the local minima, and has strictly nega-
tive curvature directions in neighborhoods of local maxima and sad-
dle points. Similar geometric analysis has been conducted for dic-
tionary learning [25], phase retrieval [26], and single channel sparse
blind deconvolution [10]. Recently, Mei et al. [27] analyzed the ge-
ometric structure of the empirical risk of a class of machine learning
problems (e.g., nonconvex binary classification, robust regression,
and Gaussian mixture model). This paper is the first such analysis
for MSBD.

Properties (S1) and (S2) allow simple manifold optimization al-
gorithms to find the ground truth in the nonconvex formulation. Un-
like the second order methods in previous works [28, 26], we take
advantage of recent advances in the analysis of first-order methods
[29, 30], and prove that a simple manifold gradient descent algo-
rithm, with random initialization and a fixed step size, can accurately
recover a signed shifted version of the ground truth in polynomial
time almost surely. This is the first guaranteed algorithm for MSBD
that does not rely on restrictive assumptions on f or {xi}Ni=1.

2. MSBD ON THE SPHERE

2.1. Problem Statement

In MSBD, the measurements y1, y2, . . . , yN ∈ Rn are the circular
convolutions of unknown sparse vectors x1, x2, . . . , xN ∈ Rn and
an unknown vector f ∈ Rn, i.e., yi = xi~f . In this paper, we solve
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for {xi}ni=1 and f from {yi}Ni=1. One can rewrite the measurement
as Y = CfX , where Cf represents the circulant matrix whose first
column is f , and Y = [y1, y2, . . . , yN ] and X = [x1, x2, . . . , xN ]
are n × N matrices. Without structures, one can solve the problem
by choosing any invertible circulant matrix Cf and compute X =
C−1
f Y . The fact that X is sparse narrows down the search space.

Even with sparsity, the problem suffers from inherent scale and
shift ambiguities. Suppose Sj : Rn → Rn denotes a circular shift
by j positions, i.e., Sj(x)(k) = x(k−j) for j, k ∈ [n]. Here we
use x(j) to denote the j-th entry of x ∈ Rn (treated as modulo n).
Note that we have yi = xi ~ f = (αSj(xi)) ~ (α−1S−j(f)) for
every nonzero α ∈ R and j ∈ [n]. Therefore, MSBD has equivalent
solutions generated by scaling and circularly shifting {xi}ni=1 and
f .

Throughout this paper, we assume that the circular convolution
with the signal f is invertible, i.e., there exists a filter g such that
f ~ g = e1 (the first standard basis vector). Equivalently, Cf is an
invertible matrix, and the discrete Fourier transform (DFT) of f is
nonzero everywhere. Since yi ~ g = xi ~ f ~ g = xi, one can find
g by solving the following optimization problem:

(P0) min
h∈Rn

1

N

N∑
i=1

‖Cyih‖0, s.t. h 6= 0.

The constraint eliminates the trivial solution that is 0. If the solution
to MSBD is unique up to the aforementioned ambiguities, then the
only minimizers of (P0) are h = αSjg (α 6= 0, j ∈ [n]).

2.2. Smooth Formulation

Fig. 1. Unit `1, `2,
and `4 spheres in 2-D.

Minimizing the non-smooth `0 “norm”
is usually challenging. Instead, one can
choose a smooth surrogate function for
sparsity. It is well-known that minimiz-
ing the `1 norm can lead to sparse solu-
tions [31]. An intuitive explanation is that
the sparse points on the unit `2 sphere
(which we call unit sphere from now on)
have the smallest `1 norm. As demon-
strated in Figure 1, these sparse points
also have the largest `4 norm. Therefore,
maximizing the `4 norm, a surrogate for
the “spikiness” [32] of a vector, is akin to minimizing its sparsity.

Here, we make two observations: (1) one can eliminate the scal-
ing ambiguity by restricting h to the unit sphere Sn−1; (2) sparse
recovery can be achieved by maximizing ‖·‖44. Based on these ob-
servations, we adopt the following optimization problem:

(P1) min
h∈Rn

− 1

4N

N∑
i=1

‖CyiRh‖
4
4, s.t. ‖h‖ = 1.

The matrix R := ( 1
θnN

∑N
i=1 C

>
yiCyi)

−1/2 ∈ Rn×n is a precondi-
tioner, where θ is a parameter that is proportional to the sparsity level
of {xi}Ni=1. In Section 3, under specific probabilistic assumptions on
{xi}Ni=1, we explain how the preconditioner R works.

Problem (P1) can be solved using first-order or second-order op-
timization methods over Riemannian manifolds. The main result of
this paper provides a geometric view of the objective function over
the sphere Sn−1 (see Figure 2). We show that some off-the-shelf
optimization methods can be used to obtain a solution ĥ close to a
scaled and circularly shifted version of the ground truth. Specifically,

ĥ satisfiesCfRĥ ≈ ±ej for some j ∈ [n], i.e.,Rĥ is approximately
a signed and shifted version of the inverse of f . Given solution ĥ to
(P1), one can recover f and xi (i = 1, 2, . . . , N ) as follows:

f̂ = F−1[F(Rĥ)�−1], x̂i = CyiRĥ. (1)

Here, we use x�−1 to denote the entrywise inverse of x.

3. GLOBAL GEOMETRIC VIEW

In this paper, we assume that {xi}Ni=1 are random sparse vectors,
and f is invertible:

(A1) The channels {xi}Ni=1 follow a Bernoulli-Rademacher
model. More precisely, xi(j) = AijBij are independent
random variables, Bij’s follow a Bernoulli distribution
Ber(θ), and Aij’s follow a Rademacher distribution (taking
values 1 and −1, each with probability 1/2).

(A2) The circular convolution with the signal f is invertible. We
use κ to denote the condition number of f , which is defined
as κ :=

maxj |(Ff)(j)|
mink |(Ff)(k)|

=
σ1(Cf )

σn(Cf )
, i.e., the ratio of the largest

and smallest magnitudes of the DFT of f .

The Bernoulli-Rademacher model is a special case of the Bernoulli–
sub-Gaussian models. The derivation in this paper can be repeated
for other sub-Gaussian nonzero entries, with different tail bounds.
We use the Rademacher distribution for simplicity.

Let φ(x) = − 1
4
‖x‖44. Its gradient and Hessian are defined

by ∇φ(x)(j) = −x3j , and Hφ(x)(jk) = −3x2jδjk. (We use
H(jk) to denote the entry of H ∈ Rn×n in the j-th row and
k-th column, and use δjk to denote the Kronecker delta.) Then
the objective function in (P1) is L(h) = 1

N

∑N
i=1 φ(CyiRh),

where R = ( 1
θnN

∑N
i=1 C

>
yiCyi)

−1/2. The gradient and Hes-
sian are ∇L(h) = 1

N

∑N
i=1R

>C>yi∇φ(CyiRh), and HL(h) =
1
N

∑N
i=1R

>C>yiHφ(CyiRh)CyiR. Since L(h) is to be minimized
over Sn−1, we use optimization methods over Riemannian mani-
folds [33]. To this end, we define the tangent space at h ∈ Sn−1

as {z ∈ Rn : z ⊥ h}. We study the Riemannian gradient and
Riemannian Hessian of L(h) (gradient and Hessian along the tan-
gent space at h ∈ Sn−1): ∇̂L(h) = Ph⊥∇L(h), and ĤL(h) =
Ph⊥HL(h)Ph⊥ − 〈∇L(h), h〉Ph⊥ , where Ph⊥ = I − hh> is the
projection onto the tangent space at h. We refer the readers to [33]
for a more comprehensive discussion of these concepts.

The toy example in Figure 2 demonstrates the geometric struc-
ture of the objective function on Sn−1. (As shown later, the quantity
EL′′(h) is, up to an unimportant rotation of the coordinate system,
a good approximation to L(h).) The local minima correspond to
signed shifted versions of the ground truth (Figure 2(a)). The Rie-
mannian gradient is zero at stationary points, including local min-
ima, saddle points, and local maxima of the objective function when
restricted to the sphere Sn−1. (Figure 2(b)). The Riemannian Hes-
sian is positive definite in the neighborhoods of local minima, and
has at least one strictly negative eigenvalue in the neighborhoods of
local maxima and saddle points (Figure 2(c)). We say that a station-
ary point is a “strict saddle point” if the Riemannian Hessian has at
least one strictly negative eigenvalue. Our main result Theorem 3.1
formalizes the observation thatL(h) only has two types of stationary
points: (1) local minima, which are close to signed shifted versions
of the ground truth, and (2) strict saddle points. Please refer to the
supplementary result for the full proof.
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(a) (b) (c)

Fig. 2. Geometric structure of the objective function over the sphere.
For n = 3, we plot the following quantities on the sphere S2: (a)
EL′′(h), (b) ‖E∇̂L′′(h)‖, and (c) minz⊥h,‖z‖=1 z

>EĤL′′(h)z.

Theorem 3.1. Suppose Assumptions (A1) and (A2) are satisfied, and
the Bernoulli probability satisfies 1

n
≤ θ < 1

3
. Let κ be the condition

number of f , and let ρ < 10−3 be a small tolerance constant. There
exist constants c1, c′1, c2, c

′
2 > 0 (depending only on θ), such that:

if N > max{ c1n
9

ρ4
log n

ρ
, c2κ

8n8

ρ4
logn}, then with probability at

least 1 − n−c
′
1 − n−c

′
2 , every local minimum h∗ in (P1) is close to

a signed shifted version of the ground truth. I.e., for some j ∈ [n]:
‖CfRh∗ ± ej‖ ≤ 2κ

√
ρ. Moreover, one can partition Sn−1 into

three setsH1,H2, andH3, which, for some c(n, θ, ρ) > 0, satisfy:
◦ L(h) is strongly convex inH1, i.e.,

minz:‖z‖=1
z⊥h

z>ĤL(h)z ≥ c(n, θ, ρ) > 0.

◦ L(h) has negative curvature inH2, i.e.,
minz:‖z‖=1

z⊥h
z>ĤL(h)z ≤ −c(n, θ, ρ) < 0.

◦ L(h) has a descent direction inH3, i.e.,
‖∇̂L(h)‖ ≥ c(n, θ, ρ) > 0.

Clearly, all the stationary points of L(h) on Sn−1 belong to H1 or
H2. The stationary points in H1 are local minima, and the station-
ary points inH2 are strict saddle points.

Proof Sketch. Note that R = ( 1
θnN

∑N
i=1 C

>
yiCyi)

−1/2 asymptot-
ically converges to (C>f Cf )

−1/2 as N increases. Therefore, L(h)
can be approximated by

L′(h) =
1

N

N∑
i=1

φ(Cyi(C
>
f Cf )

−1/2h)

=
1

N

N∑
i=1

φ(CxiCf (C
>
f Cf )

−1/2h).

Since Cf (C
>
f Cf )

−1/2 is an orthogonal matrix, one can study
the objective function L′′(h′) = 1

N

∑N
i=1 φ(Cxih

′) with h′ =

Cf (C
>
f Cf )

−1/2h, which is a rotated version ofL′(h) on the sphere.
Our analysis consists of three parts:

(1) Geometric structure of EL′′: We first bound the smallest
nonzero eigenvalue (minz:‖z‖=1, z⊥h z

>EĤL′′(h)z) of the Rie-
mannian Hessian, which is strictly positive near its local minima,
and strictly negative near all other stationary points (the strict saddle
points). At the same time, at all other points on Sn−1 (the points
further away from stationary points), the Riemannian gradient of
EL′′ is bounded away from zero.

(2) Deviation of L′′ (or its rotated version L′) from EL′′: We
bound ‖∇̂L′′(h)− E∇̂L′′(h)‖ and ‖ĤL′′(h)− EĤL′′(h)‖ using
the matrix Bernstein inequality and union bounds.

(3) Difference betweenL andL′: We bound ‖∇̂L(h)− ∇̂L′(h)‖,
and ‖ĤL(h)− ĤL′(h)‖ using the matrix Bernstein inequality and
Lipschitz continuity of ∇̂L(h) and ĤL(h).

Theorem 3.1 follows by combining the above results.

Theorem 3.1 is a sufficient condition for favorable geometric
properties, and may not be necessary for successful recovery of
MSBD. It holds uniformly for all f , which is more demanding than
the sampling requirement for a specific f . For these reasons, the
sample complexity bound on the number N of channels is pes-
simistic, especially when compared to the empirical success of our
optimization method introduced in the rest of the paper.

4. OPTIMIZATION METHOD

Recently, first-order methods have been shown to escape strict saddle
points with random initialization [34, 35]. In this paper, we use the
manifold gradient descent algorithm studied by Lee et al. [30]. One
can initialize the algorithm with a random h(0), and use the following
iterative update:

h(t+1) = A(h(t)) := PSn−1

(
h(t) − γ∇̂L(h(t))

)
. (2)

Each iteration takes a Riemannian gradient descent step in the tan-
gent space, and does a retraction by normalizing the iterate (project-
ing onto Sn−1). Using the geometric structure introduced in Sec-
tion 3, and some technical results in [29, 30], the following result
gives a theoretical guarantee for manifold gradient descent for our
formulation of MSBD: convergence to an accurate estimate (up to
the inherent sign and shift ambiguity) of the true solution.

Theorem 4.1. Suppose that the geometric structure in Theorem 3.1
is satisfied. If manifold gradient descent (2) is initialized with a ran-
dom h(0) drawn from a uniform distribution on Sn−1, and the step
size is chosen as γ = 1

128n3 , then (2) converges to a local mini-
mum of L(h) on Sn−1 almost surely. It particular, after at most
T = 4096n8

θ2(1−3θ)2ρ4
iterations, h(T ) ∈ H1. Moreover, for some

j ∈ [n]

‖CfRh(T ) ± ej‖ ≤ 2κ
√
ρ.

Corollary 4.2. If the conditions of Theorem 4.1 are satisfied, then
the recovered f̂ and x̂i in (1), computed using the output of manifold
gradient descent ĥ = h(T ), satisfy (for some j ∈ [n]):

‖x̂i ± Sj(xi)‖
‖xi‖

≤ 2κ
√
ρn,

‖f̂ ± S−j(f)‖
‖f‖ ≤

2κ
√
ρn

1− 2κ
√
ρn
.

Theorem 4.1 and Corollary 4.2 show that, with a random ini-
tialization and a fixed step size, manifold gradient descent outputs,
in polynomial time, a solution that is close to a signed and shifted
version of the ground truth.

5. NUMERICAL EXPERIMENTS

5.1. Deconvolution with Synthetic Data

In this section, we examine the empirical performance of manifold
gradient descent (2) in solving MSBD (P1). We synthesize {xi}Ni=1

following the Bernoulli-Rademacher model, and synthesize f fol-
lowing a Gaussian distribution N(0n×1, In). In all experiments, we
run manifold gradient descent for T = 100 iterations, with a fixed
step size of γ = 0.1.

Recall that the desired h is a signed shifted version of the ground
truth, i.e., CfRh = ±ej (j ∈ [n]). Therefore, to evaluate the accu-
racy of the output h(T ), we compute CfRh(T ) with the true f , and
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declare successful recovery if ‖CfRh(T )‖∞/‖CfRh(T )‖ > 0.95,
or equivalently, if maxj∈[n]

∣∣cos∠(CfRh(T ), ej
)∣∣ > 0.95. We

compute the success rate based on 100 Monte Carlo instances. In
a typical successful instance, h(t) converges to an accurate estimate
of the ground truth after about 50 iterations.

In the first experiment, we fix θ = 0.1 (sparsity level, mean
of the Bernoulli distribution), and run experiments with n =
32, 64, . . . , 256 and N = 32, 64, . . . , 256 (see Figure 3(a)). In
the second experiment, we fix n = 256, and run experiments with
θ = 0.02, 0.04, . . . , 0.16 and N = 32, 64, . . . , 256 (see Figure
3(b)). The empirical phase transitions suggest that, for sparsity level
relatively small (e.g., θ < 0.16), there exist a constant c > 0 such
that manifold gradient descent can recover a signed shifted version
of the ground truth with N ≥ cnθ.

In the third experiment, we examine the phase transition with
respect to N and the condition number κ of f , which is the ratio
of the largest and smallest magnitudes of its DFT. To synthesize f
with specific κ, we generate the DFT f̃ of f that is random with
the following distribution: (1) The DFT f̃ is symmetric, i.e., f̃(j) =
f̃(n+2−j), so that f is real. (2) The phase of f̃(j) follows a uniform
distribution on [0, 2π), except for the phases of f̃(1) and f̃(n/2+1)

(if n is even), which are always 0 for symmetry. (3) The gains of
f̃ follows a uniform distribution on [1, κ]. We fix n = 256 and
θ = 0.1, and run experiments with κ = 1, 2, 4, . . . , 128 and N =
32, 64, . . . , 256 (see Figure 3(c)). The phase transition suggests that
the number N for successful empirical recovery is not sensitive to
the condition number κ.

Manifold gradient descent is robust against noise. We repeat the
above experiments with noisy measurements: yi = xi ~ f + σεi,
where εi follows a Gaussian distribution N(0n×1, In). The phase
transitions for σ = 0.1

√
nθ (SNR ≈ 20 dB) are shown in Figure

3(d), 3(e), and 3(f). For a reasonable noise level, the number N of
noisy measurements we need to accurately recover a signed shifted
version of the ground truth is roughly the same as with noiseless
measurements.
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Fig. 3. Empirical phase transition (grayscale values represent suc-
cess rates). (a) and (d) show the phase transitions of N versus n. (b)
and (e) show the phase transitions of N versus θ. (c) and (f) show
the phase transitions of N versus κ. (a)(b)(c) are the results for the
noiseless case. (d)(e)(f) are the results for SNR ≈ 20 dB.

5.2. Super-Resolution Fluorescence Microscopy

Manifold gradient descent can be applied to deconvolution of time
resolved fluorescence microscopy images. The goal is to recover

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 4. Super-resolution fluorescence microscopy experiment us-
ing manifold gradient descent. (a) True images. (b) Observed im-
ages. (c) Recovered images using blind deconvolution. (d) Recov-
ered images using non-blind deconvolution and a miscalibrated PSF.
(e)(f)(g)(h) are average images of (a)(b)(c)(d). (i) True PSF. (j) Re-
covered PSF using blind deconvolution. (k) Miscalibrated PSF used
in non-blind deconvolution. All images in this figure are of the same
size (64× 64).

sharp images xi’s from observations yi’s that are blurred by an un-
known PSF f .

We use a publicly available microtubule dataset [22], which con-
tains N = 626 images (Figure 4(a)). Since fluorophores are are
turned on and off stochastically, the images xi’s are random sparse
samples of the 64× 64 microtubule image (Figure 4(e)). The obser-
vations yi’s (Figure 4(b), 4(f)) are synthesized by circular convolu-
tions with the PSF in Figure 4(i). The recovered images (Figure 4(c),
4(g)) and kernel (Figure 4(j)) clearly demonstrate the effectiveness
of our approach in this setting.

Blind deconvolution is less sensitive to instrument calibration
error than non-blind deconvolution. If the PSF used in a non-blind
deconvolution method fails to account for certain optic aberration,
the resulting images may suffer from spurious artifacts. For exam-
ple, if we use a miscalibrated PSF (Figure 4(k)) in non-blind image
reconstruction using FISTA [36], then the recovered images (Figure
4(d), 4(h)) suffer from serious spurious artifacts.

6. CONCLUSION

In this paper, we study the geometric structure of multichannel
sparse blind deconvolution over the unit sphere. Our theoretical
analysis reveals that local minima of a sparsity promoting smooth
objective function correspond to signed shifted version of the ground
truth, and saddle points have strictly negative curvatures. Thanks
to the favorable geometric properties of the objective, we can si-
multaneously recover the unknown signal and unknown channels
from convolutional measurements using manifold gradient descent
with a random initialization. In practice, many convolutional mea-
surement models are subsampled in the spatial domain (e.g., image
super-resolution) or in the frequency domain (e.g., radio astron-
omy). Studying the effect of subsampling on the geometric structure
of multichannel sparse blind deconvolution is an interesting problem
for future work.
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