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ABSTRACT

Unimodality-constrained matrix or tensor factorization has

applications in various domains, such as non-parametric

source localization and data clustering, where the signals of

interest are unimodal. Such factorizations are challenged by

the non-convex nature of unimodality constraints. This paper

develops a modified Frank-Wolfe algorithm with a succes-

sive programming technique, which produces a sequence of

linear subproblems with modified and adaptive constraints.

The algorithm is proven to converge and the subproblems are

shown to be solved easily. In an application example of solv-

ing unimodality-constrained tensor factorization problems,

the proposed algorithm demonstrates substantial complexity

reduction while achieving the same convergence performance

as compared to a brute-force projected gradient algorithm.

Index Terms— Unimodal, Frank-Wolfe algorithm, tensor

decomposition, source localization, data fusion

1. INTRODUCTION

In source localization, if a sensor moves in a straight line to

measure the source signal, the received signal strength (RSS)

first increases to a peak and decreases thereafter. Such a uni-

modality is essential for finding a source in harsh environment

where the signal propagation characteristic is not known. For

example, for an acoustic source in the ocean, it is difficult

to determine either the propagation speed or the power de-

cay rate of the acoustic signal [1, 2]. In other localization

scenarios, such as searching for a primary user in cognitive

radio or finding a jammer in sensor networks [3, 4], the target

does not cooperate with the sensors. As a result, conventional

range-based trilateration is not applicable and it is essential to

exploit unimodality for localization [5, 6]. Furthermore, uni-

modality is also found in many estimation problems in vari-

ous domains including biostatistics, chemometrics, and data

mining for medical treatments [7–12].

The various estimation problems mentioned above can

be generally formulated into the following unimodality-
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constrained problem

P : minimize
x∈Rn

f(x)

subject to x ∈ U ∩M
where the vector variable x is the target signal that is be-

lieved to be unimodal, M = {x : a ≤ ‖x‖1 ≤ b} for some

a, b ∈ [0,∞], and U represents the set of all unimodal vec-

tors. Specifically, a vector x = (x1, x2, . . . , xn) ∈ U is

unimodal if

0 ≤x1 ≤ x2 ≤ · · · ≤ xs

xs ≥ xs+1 ≥ · · · ≥ xn ≥ 0 (1)

are satisfied for some 1 ≤ s ≤ n.

Relation to Prior Work: Recent techniques to solve P

are based on unimodal projections. For example, [7] develops

a projected alternating minimization algorithm, and [5] pro-

vides a projected gradient algorithm for a matrix factorization

objective f . Specifically, projecting x onto U is equivalent

to minimizing ‖x̂− x‖ subject to x̂ ∈ U . There exists many

efficient isotonic projection algorithms [13–15]. It is argued

in [14] that an exact unimodal projection requires O(n) time

under the L2-norm metric, whereas, it requires O(n logn)
time under the L1 metric. However, these projection tech-

niques may not be easily extended to general constraint sets

U ∩M with the same efficiency. Note that the overall com-

plexity to solve P is very sensitive to the efficiency of the

projection.

In this paper, we focus on projection-free algorithms to

solve P . The fundamental idea is to construct a series of

easy-to-solve subproblems, and iteratively approximate the

solution by solving the subproblems. A widely researched

algorithm of this kind is the Frank-Wolfe algorithm [16–20].

However, Frank-Wolfe algorithms require the constraint set to

be convex. For non-convex constraints, the Frank-Wolfe up-

date is not guaranteed to stay inside the constraint set. Other

related solutions include sequential programming [21, 22],

which successively constructs simplified (convex) constraints

from the original problem. However, none of them were

designed to handle the unimodality constraints.

Our Contributions: The specific challenge for P is how

to dynamically design simplified constraint subsets for inner

7938978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



subproblems such that (i) the subproblems are easy to solve,

and (ii) the algorithm can converge to a reasonably good solu-

tion. In tackling these challenge, this paper makes the follow-

ing contributions: First, we develop a unimodal Frank-Wolfe

(U-FW) algorithm based on successive programming, where

each iteration solves a linear program (LP) constrained by a

dynamic set; the LP can be solved by at most 2n steps. Sec-

ond, we prove the convergence of the algorithm and show that

O(1/
√
t) convergence rate can be achieved using an adap-

tive step size. Third, we demonstrate the application of the

U-FW algorithm for solving unimodality-constrained tensor

factorization problems. In an application of multimodal data

fusion for source localization, our numerical results demon-

strate good convergence and the computational efficiency of

the U-FW algorithm.

2. ALGORITHM DESIGN

2.1. Review of Frank-Wolfe Algorithm

If the unimodality constraint x ∈ U is not present, the basic

procedure of Frank-Wolfe algorithm is to sequentially com-

pute an approximate solution to P by linearizing the objec-

tive f based on the current iterate x(t). Specifically, x(t+1) is

updated as

x(t+1) = x(t) + λt(ŷ − x(t)) (2)

where ŷ = argminy∈M ∇f(x(t))Ty with λt being the step

size. Since the constraint set M of interest is convex and

x(t+1) is constructed as a convex combination of ŷ and x(t),

x(t+1) will stay in M. Therefore, the prerequisites of the

Frank-Wolfe algorithms are, first, the constraints are convex,

and second, the subproblem miny∈M ∇f(x(t))Ty can be

solved efficiently.

The basic step of successive programming is similar ex-

cept that it also approximates the constraint set using a convex

subset:

PSP : minimize
y∈Rn

f(x(t)) +∇f(x(t))Ty

subject to y ∈ U(x(t))

where U(x) ⊆ U ∩M is a convex set that contains x.

However, it is a challenge to design the dynamic subset

U(x) for PSP, because the design of U(x) affects both the

convergence and the computational complexity to solve PSP.

The rest of the paper will focus on constructing U(x) and

prove the convergence of the algorithm.

2.2. Properties of the Unimodal Set

Let Us be the set of vectors x that satisfy the conditions (1)

with the sth entry being the largest one. As a result, the

unimodal set U can be written as U =
⋃n

s=1 Us. Intu-

itively, one should construct U(x) to cover as many compo-

nent sets Us’s as possible, so that the update (2), as driven by

the solution of PSP, can move from one component set Us

to another. We find that a good candidate for U(x) is Ũs =
conv

(
Us−1 ∪ Us ∪ Us+1

)
, where we define U0 = Un+1 = ∅.

A nice property of Ũs is that the set can be characterized by

simple linear constraints.

Proposition 1. A vector x ∈ Ũs = conv
(
Us−1 ∪ Us ∪ Us+1

)

if and only if the following conditions are satisfied:

0 ≤ x1 ≤ x2 ≤ · · · ≤ xs−1, if s ≥ 2 (3)

xs ≥ 0, (4)

xs+1 ≥ xs+2 ≥ · · · ≥ xn ≥ 0, if s ≤ n− 1. (5)

Let s = S(x) , argmax1≤i≤n xi be the index where

xs takes the largest value. Since Ũs is unbounded, we form

the dynamic constraint set U(x) by intersecting Ũs with two

hyperplanes ‖x‖1 ≥ a and ‖x‖1 ≤ b. More specifically,

U(x) := ŨS(x)∩ (6)

{y ∈ Rn : a(x) ≤ ‖y‖1 ≤ b(x)}

where a(x) = min{1, α̂(x)}‖x‖1, b(x) = max{1, α̂(x)}‖x‖1,

and α̂(x) is the solution that minimizes f(αx) subject to

αx ∈ M. Note that minimizing f(αx) can be solved ef-

ficiently under many popular cost functions. For example,

when f is a quadratic function of x, the solution α̂(x) can be

found with closed forms. In general, α̂(x) can be computed

using bisection search for the root of ∂f(αx)/∂α, although

global optimality is only guaranteed when f is convex.

We find that the polytope U(x) has at most 2n extreme

points.

Proposition 2. The polygon U(x) defined in (6) has n ex-

treme points when a(x) = b(x), and 2n extreme points when

a(x) 6= b(x).

Proof. (Sketch) The proof can be established by finding the

extreme points according to (3)–(5) and (6).

Proposition 2 implies that if one uses a simplex method to

solve PSP, the solution can be found by at most 2n steps, be-

cause the simplex method moves only at the extreme points of

the constraint set [23,24]. This further suggests that, handling

the unimodality constraint may just add in marginal complex-

ity using the proposed strategy.

Finally, it turns out that although U(x) * U , the update

x+ λ(ŷ − x) for any λ ∈ [0, 1] and ŷ as the solution to PSP

still belongs to the unimodal set U .

Proposition 3. Suppose that α̂(x) is bounded. Let ŷ be the

solution to PLP with U(x) defined from (6). If x ∈ U , then

x′ = x+ λ(ŷ − x) ∈ U for any λ ∈ [0, 1].

Proof. (Sketch) The solution of an LP is always at the ex-

treme points of the constraint set, and the extreme points al-

ways belong to U .
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Algorithm 1 Unimodal Frank-Wolfe (U-FW) algorithm

1. Initialization: Choose x(0) ∈ U ∩ M and a (small)

stopping threshold ǫ > 0.

2. At each step t = 0, 1, . . . , compute the constraint set

U(x(t)) according to (6).

3. Find ŷ as the solution to PSP.

4. Update x(t+1) = x(t)+λt(ŷ−x(t)), where λt ∈ [0, 1].
A possible choice of λt is λt = 2/(t+ 2).

5. Repeat from Step 2 until ∇f(x(t))T(x(t) − ŷ) < ǫ

2.3. Algorithm Design

Using the properties in Propositions 2 – 3, one can construct

an algorithm whose trajectory never leaves the constraint set

U ∩M, and, at the same time, can be computed efficiently.

This is summarized in Algorithm 1.

3. CONVERGENCE ANALYSIS

While P is non-convex, we evaluate the convergence by an-

alyzing the dual gap defined below

g(x) = max
w∈U(x)

−∇f(x)T(w − x) (7)

which can be shown to be a lower bound of the duality gap of

problem P in the Frank-Wolfe algorithm literature [16–20].1

The dual gap g(x) in (7) explains the stopping criterion

in Step 5 of Algorithm 1, which computes ∇f(x(t))T(x(t) −
ŷ) = g(x(t)). Note that g(x) ≥ 0 because if one takes w =
x ∈ U(x), the right hand side (R.H.S.) of (7) becomes 0.

Thus, g(x) = 0 defines a stationary point.

To study the convergence, the following mild condition is

assumed.

Assumption 1 (Smoothness). The objective function f is dif-

ferentiable and its gradient ∇f is Lipschitz continuous, i.e.,

there exists L < ∞, such that ‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖
for any x,y ∈ M under some norm ‖ · ‖.

From Assumption 1, the Lipschitz smoothness condition

implies that [24, 25]

f(y) ≤ f(x) +∇f(x)T(y − x) +
L

2
‖y − x‖2. (8)

Moreover, the fact that M is compact implies that Ms =
sup

x,y∈Ũs∩M ‖x− y‖2 are finite, for s = 1, 2, . . . , n.

1However, the existing analysis for the conventional Frank-Wolfe method

requires the constraint to be convex, which is not the case here.

Applying the update rule x(t+1) = x(t)+λt(ŷ−x(t)) to

the Lipschitz smoothness inequality (8), one arrives at

f(x(t+1))

≤ f(x(t)) + γt∇f(x(t))T(ŷ − x(t)) + γ2
t

L

2
‖ŷ − x(t)‖2

≤ f(x(t))− γtg(x
(t)) +

γ2
tLMs

2
. (9)

Manipulating the above inequality (9), the following con-

vergence result can be easily obtained.

Theorem 1 (Convergence). Algorithm 1 terminates after fi-

nite steps T < ∞. Specifically, min0≤k≤t g(x
(k)) → 0 as

t → ∞.

Proof. (Sketch) The result follows from inequality (9) and the

fact that f(x(0))− f(x∗) is bounded.

In addition, if one knows the parameters L and Ms, an

adaptive step size λt can be derived by minimizing the upper

bound (9). The solution is given by λ∗
t = g(x(t))

LMs

. Therefore,

the step size rule can be designed as λt = min{ g(x(t))
LMs

, 1}.

With this design, the algorithm can be shown to converge at a

O(1/
√
t) rate.

Theorem 2 (Rate of Convergence). Suppose that step size

rule λt = min{ g(x(t))
LMs

, 1} is used in Algorithm 1. Then Algo-

rithm 1 terminates after O(1/ǫ2) steps. Specifically,

min
0≤k≤t

g(x(k)) ≤ max{
√
2h0C, 2h0}√
t+ 1

where h0 = f(x(0))− f∗ is the initial gap, in which f∗ is the

minimum objective value.

Proof. (Sketch) With the dual gap g(x) defined in (7), the

convergence proof follows an approach similar to [17].

As an example, consider estimating a unimodal signal

c ∈ Rn
+, with n = 20, generated by projecting a vector

c0 onto the unimodal set U , where each element of c0
follows an independent, uniform distribution over [0, 1]. As-

sume that the observation is given by z = c + n, where

n ∼ N (0, σ2I). Consider recovering c by minimizing the

least squares cost f(x) = ‖x − z‖22. As a result, the cor-

responding unimodality-constrained least squares estimation

problem can be formulated as P with M = Rn. Fig. 1

(a) shows a realization of the algorithm trajectory for Algo-

rithm 1. The observed convergence rate of the objective f is

roughly t−1.99. Fig. 1 (b) shows the recovery performance

in terms of the mean squared error (MSE) E{‖x̂− c‖22} ver-

sus the standard deviation σ of the noise. The non-negative

scheme simply projects the observation z onto Rn
+. The

“unimodal init(20)” scheme performs Algorithm 1 with 20

random initializations and picks the solution that yields the

minimum cost. The result shows that imposing the unimodal-

ity constraints indeed better recovers the desired signal.
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Fig. 1. Example under a quadratic cost

4. APPLICATION IN TENSOR FACTORIZATION

FOR SOURCE LOCALIZATION

Consider localizing an active signal source using a set of pas-

sive sensors deployed randomly in a 200× 200 m2 area. The

sensors measure the signals emitted from the source. There

could be multiple types of signals to measure, such as the RSS

signals of electromagnetic waveforms and the time-of-arrival

(TOA) signals of the waveforms. The signals are significantly

noise disturbed to model a harsh environment. The noise-

normalized RSS signal is modeled as PdB(d) = 70 − 36 ×
log10(max{10, d})+ ξ, where ξ ∼ N (0, σ2

s ) is to model log-

normal shadowing and σs = 10 dB. The TOA signal is mod-

eled as t(d) = d/c+ b, where c = 340 m/s and b ∼ N (0, σ2
t )

is to model synchronization errors and σt = 100 ms. To

normalize the data, we use h1(d) = exp(−β110
−PdB(d)/10)

and h2(d) = exp(−β2t(d)
2). However, these models are not

known by the system.

In [26], it was observed that a good way to fuse the mul-

timodal data for non-parametric source localization is to ar-

range the data according to the sampling positions into a ten-

sor, i.e., a 3D data array, and apply tensor processing tech-

niques to interpret the hidden unimodal structure of the data.

Specifically, for each type of data, arrange the measurements

according to their sampling positions into a sparse matrix Hk,

fill in the missing values using matrix completion methods to

obtain a completed matrix Xk, and stack Xk’s to form a ten-

sor X . Then, solve the following tensor factorization problem

PUTF : minimize
α,w1,w2,w3

‖X − α×1 w1 ×2 w2 ×3 w3‖2F
subject to α > 0, ‖w1‖1 = ‖w2‖1 = ‖w3‖1 = 1

w1,w2 ∈ U .

This strategy yields the signature vectors w1 and w2 with

their peaks locations indicating the source location. In this

example, the peak locations of w1 and w2 are estimated using

the reflected-correlation estimator developed in [5].

While the prior work [26] ignored the unimodality con-

straints w1,w2 ∈ U , PUTF can now be efficiently solved

using Algorithm 1. As a baseline, the “Tensor PG” scheme

solves PUTF using the projected gradient algorithm [5]. For
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Fig. 2. Localization accuracy and computational complexity

a benchmark, we also compare the localization performance

with weighted “Centroid” schemes [3] with L∞-weight (just

consider the sensor location that records the maximum mea-

surement) and L1-weight (a linear combinations of the sensor

location by the measurement data), as well as “Matrix-RSS”

and “Matrix-TOA” schemes [5, 26].

Fig. 2 (a) shows the localization accuracy versus the num-

ber of sensors. Essentially, the proposed scheme and “Tensor

PG” schemes that are based on tensor models outperform all

the baselines. The proposed scheme performs slightly better

than the “Tensor PG” scheme. At the same time, the pro-

posed algorithm is much more computationally efficient than

projected gradient as seen from Fig. 2 (b).

We can also observe the benefit of exploiting the unimodal

structure for localization. First, the “Centroid” schemes per-

form the worst, because they do not exploit the unimodal

structure of the data. Second, the Matrix-RSS and Matrix-

TOA schemes work slightly better than the naive scheme, as

the matrix model also explicitly exploits the unimodal struc-

ture. However, both schemes can only exploit a portion of

the measurement data. Third, the AVG scheme fuses the re-

sults by simply averaging the estimates ŝ
′
RSS and ŝ

′
TOA from

the Matrix-RSS and Matrix-TOA schemes. Thus, such a re-

sult is not robust. From our experiment, the average scheme

requires roughly 50% more measurement data to achieve the

same localization accuracy from the tensor-based methods.

5. CONCLUSIONS

This paper developed a unimodal Frank-Wolfe algorithm to

solve unimodality-constrained optimization problems. The

algorithm approximates the original problem into a series of

linear subproblems, where each subproblem is constrained

by a different subset such that it can be solved with linear

complexity. Convergence has been proven under various step

size rules. In an application of multimodal data fusion for

non-parametric source localization, the proposed algorithm

was applied to solve tensor factorization problems. The pro-

posed algorithm demonstrated substantial complexity reduc-

tion with no performance lost compared to a brute-force pro-

jected gradient algorithm.
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