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ABSTRACT

A variety of unconstrained nonconvex optimization problems
have been shown to have benign geometric landscapes that
satisfy the strict saddle property and have no spurious lo-
cal minima. We present a general result relating the geom-
etry of an unconstrained centralized problem to its equality-
constrained distributed extension. It follows that many global
consensus problems inherit the benign geometry of their orig-
inal centralized counterpart. Taking advantage of this fact,
we demonstrate the favorable performance of the Gradient
ADMM algorithm on a distributed low-rank matrix approx-
imation problem.

Index Terms— Constrained nonconvex optimization,
global consensus, low-rank matrix approximation

1. INTRODUCTION

With an abundance of data, the scale of machine learning
problems continues to grow. Consequently, nonconvex opti-
mization problems have received growing attention as alterna-
tives to convex approaches for solving machine learning prob-
lems [1–4]. Algorithms for solving nonconvex problems can
offer reduced memory usage and computational complexity
compared to their convex counterparts, see, e.g. [5, 6]. How-
ever, the potential for undesirable features in the nonconvex
landscape (spurious local minima [7–9], degenerate saddle
points [9, 10], etc.) raises questions about these algorithms’
convergence to optimal points.

Recent research has shown, though, that many machine
learning problems—including a variety of low-rank matrix
optimization problems—actually have a benign nonconvex
landscape in which there are no spurious local minima and all
saddle points are strict (non-degenerate) saddles at which the
Hessian has at least one negative eigenvalue [2–4,11–18]. For
such problems a variety of iterative algorithms—such as gra-
dient descent with a random initialization—can exploit neg-
ative curvature directions to escape from strict saddle points
and thus provably converge to a global minimizer [19].
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To date, however, most of the results establishing benign
geometric landscapes have been limited to unconstrained
nonconvex problems [11–18,20]. Meanwhile, constraints can
be important to consider, particularly when the size of a ma-
chine learning problem demands that computations or storage
be distributed across some network [21, 22]. One way to en-
sure consensus among optimization variables in a distributed
problem is via equality constraints across the network nodes.
As one transitions from a centralized problem to a distributed
one, a question arises of whether the distributed problem in-
herits the benign geometry of the centralized problem. Since
there is a general lack of geometric analysis for constrained
nonconvex problems, this question is essentially open.

In Section 2, we present a general result relating the ge-
ometry of a centralized problem to its distributed extension.
This result establishes one-to-one correspondences of the
first-order critical points, second-order critical points, and
strict saddle points between the two problems. This is in spite
of the fact that critical points have a distinctly different defini-
tion (in terms of the Lagrangian) for constrained optimization
problems. In Section 3, we highlight one application of this
theorem, in establishing an equivalence between geometric
landscapes for broad classes of centralized problems and
their distributed formulations as global consensus problems.
We show that under certain conditions, every second-order
critical point of the distributed problem corresponds to a
global minimizer of the centralized problem. In Section 4, we
discuss algorithmic aspects for solving equality-constrained
distributed optimization problems. The recent GADMM
algorithm [23] can be guaranteed under certain conditions
to converge to a second-order critical point of an equality-
constrained distributed optimization problem. Our theory
establishes conditions under which this point will correspond
to a global minimizer of the original centralized optimization
problem. This guarantee is stronger than what appear in the
literature for distributed gradient descent (DGD), a popular
alternative algorithm for solving consensus problems. Exist-
ing DGD results show convergence either to stationary points
(which are global if the problem is convex) [24–26], or to an
arbitrarily small neighborhood of a second-order critical point
with an appropriately small stepsize [27]. As a case study,
in Section 5, we illustrate the performance of GADMM on a
distributed low-rank matrix approximation in factored form.
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2. RELATING UNCONSTRAINED GEOMETRY TO
CONSTRAINED GEOMETRY

We present a general theorem that establishes an equivalence
between the landscape of two types of optimization problems:
one that is unconstrained, and one that involves additional
variables but is constrained to an affine subspace, along which
it has a certain equivalence to the first problem.

Theorem 1. Consider two problems:

• Problem UC (unconstrained centralized):

min
x
c(x)

• Problem ECD (equality-constrained distributed):

min
x,y

d(x,y) subject toAx+By = b

where d(x,y) satisfies d(x,y) = c(x) when Ax +
By = b, andB is a square and invertible matrix.

Then x is a [first-order/second-order/strict saddle] criti-
cal point of Problem UC iff (x,B−1(b − Ax)) is a [first-
order/second-order/strict saddle] point of Problem ECD.

Theorem 1 is proved in Appendix A, where the precise
notions of [first-order/second-order/strict saddle] point are de-
fined for both Problem UC and Problem ECD. Critical points
of Problem ECD are defined in terms of the Lagrangian func-
tion for d(x,y). This theorem has applications outside of
distributed optimization, but we adopt the terminology “cen-
tralized” and “distributed” in the theorem above because the
latter problem involves additional optimization variables be-
yond those in the first, and we focus on applications in dis-
tributed optimization in this paper.

3. GEOMETRY OF GLOBAL CONSENSUS

Consider any unconstrained centralized optimization problem
of the form

minimize
w,{zj}

 J∑
j=1

fj(w, zj)

+ g(w), (1)

where first term in the objective function decouples into a sum
of objectives fj . One can distribute this problem across a net-
work of J+1 nodes in a “star topology”,1 where J agents are
connected to a central node. The resulting problem is known
as a global consensus problem (see [23, (3)]) and can be posed
as follows2:

minimize
w,{zj},{wj}

 J∑
j=1

fj(w
j , zj)

+g(w) s.t.wj = w ∀j. (2)

1We remark that our results can also be applied to other network topolo-
gies, such as the series topology where wj = wj+1, ∀j and wJ = w.

2Strictly speaking, our problem (2) is more general than [23, (3)] as (2)
involves local variables {zj} which are not constrained to be equal.

Here, w is the optimization variable at the central node, and
wj and zj are the optimization variables at node j.

Unfortunately, relatively little is currently known about
the geometric landscape of equality-constrained machine
learning problems in the form of (2): Do they have spurious
local minima? Do they satisfy the strict saddle property, or
could they have degenerate saddle points?

However, insight into the geometry of problem (2) can
be gained by applying Theorem 1. Problem (1) can be ex-
pressed in the form of Problem UC by taking3 x = [w; z]

with z = [z1; · · · ; zJ ] and c(x) =
∑J
j=1 fj(w, zj) + g(w),

while problem (2) can be expressed in the form of Prob-
lem ECD by taking x = [w; z], y = [w1; · · · ;wJ ],
d(x,y) =

∑J
j=1 fj(w

j , zj) + g(w),

A=


−I 0 · · · 0

... 0
. . . 0

−I 0 · · · 0

, B=


I · · · 0

0
. . . 0

0 · · · I

, b=

0

...
0

 . (3)

We note that B (the identity matrix) is square and invertible.
Under the constraint that Ax +By = b, which requires all
wj = w, we see that d(x,y) = c(x). By applying Theo-
rem 1, we obtain the following result.

Corollary 1. [w; z] is a [first-order/second-order/strict sad-
dle] critical point of problem (1) iff ([w; z], [w; · · · ;w])
is a [first-order/second-order/strict saddle] point of prob-
lem (2). Moreover, if problem (1) satisfies the strict saddle
property and has no spurious local minima, then for every
second-order critical point ([w; z], [w; · · · ;w]) of prob-
lem (2), [w; z] is a global minimizer of problem (1).

Corollary 1 allows one to borrow centralized geometric
analysis for problem (1) to understand the landscape of the
equality-constrained distributed problem (2).

4. GRADIENT ADMM (GADMM) ALGORITHM

We briefly discuss algorithmic aspects for solving equality-
constrained distributed optimization problems. The recent
Gradient ADMM (GADMM) algorithm [23] can be guaran-
teed under certain conditions to converge to a second-order
critical point of an equality-constrained distributed optimiza-
tion problem. Corollary 1 establishes conditions under which
this point will correspond to a global minimizer of the original
centralized optimization problem.

As outlined in [23, (38)], GADMM is intended for prob-
lems that can be expressed as4

minimize
x,y

f(x) + g(y) subject to Ax+By = b. (4)

3To simplify notation, we use [p; q] to represent [pT qT]T.
4The notations f and g are interchanged with respect to what appears

in [23, (38)].
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The global consensus problem (2) is of this form; to see this,
let x = [w1; · · · ;wJ ; z], y = w, f(x) =

∑J
j=1 fj(w

j , zj),
g(y) = g(w),

A =


−I · · · 0 0 · · · 0

0
. . . 0 0

. . . 0

0 · · · −I 0 · · · 0

 , B =


I

...
I

 , b =

0

...
0

 .
(5)

In [23, Section 3.1], it is shown how GADMM can be ap-
plied to the global consensus problem (2), with the resulting
iterations

wj(k + 1) = wj(k)− 1

β

(
∇fj(wj(k), zj(k))

+ λj(k) + ρ(wj(k)−w(k))
)
,

zj(k + 1) = zj(k)−
1

β
∇fj(wj(k), zj(k)),

w(k + 1) = w(k)− 1

β

(
∇g(wk)

−
J∑
j=1

(λj(k) + ρ(wj(k + 1)−w(k)
)
,

λj(k + 1) = λj(k) + ρ(wj(k)−w(k)).

(6)

These iterations require communication only between the
central node and each of the nodes 1, 2, . . . , J . We note that
this is the reason that we utilize (5) instead of (3) when apply-
ing GADMM for solving (2) since the resulting algorithm (6)
is more suitable for distributed implementation. On the other
hand, the form (3) is mainly utilized for analyzing the land-
scape of (2) by invoking Theorem 1.

For the global consensus problem, under assumptions B1–
B5 in [23], with the proper selection of parameters β and ρ,
and with random initialization of w(0), {wj(0)}, {zj(0)},
and {λj(0)} it is shown [23, Theorem 3.1] that with proba-
bility one, GADMM will converge to a second-order critical
point of (2). According to Corollary 1, when problem (1)
satisfies the strict saddle property and has no spurious local
minima, this second-order critical point of (2) corresponds to
a global minimizer of problem (1).

5. APPLICATION TO DISTRIBUTED LOW-RANK
MATRIX APPROXIMATION

We now discuss our results in the context of distributed low-
rank matrix approximation. Consider first the prototypical
problem of finding, for a given a data matrix Y ∈ Rn×m,
a low-rank approximation by solving

minimize
X∈Rn×m

‖X − Y ‖2F + µ‖X‖∗. (7)

Here, the nuclear norm penalty promotes low-rank structure
in the approximation X . Problem (7) is an unconstrained

convex optimization problem in the matrix variable X . It
is natural to consider solving problem (7) in factored form,
where we replace the optimization variable X with UV T,
whereU ∈ Rn×r and V ∈ Rm×r are tall matrices, and r is a
parameter that must be set in advance (typically on the order
of the rank r′ expected of the optimal solution to (7)). Under
this reparameterization, (7) becomes

minimize
U∈Rn×r,V ∈Rm×r

‖UV T − Y ‖2F + µ‖UV T‖∗. (8)

One can solve this problem using local search algorithms such
as gradient descent. Such algorithms do not require expensive
SVDs, nor do they require explicit storage of the matrixX .

Unfortunately, problem (8) is nonconvex in the optimiza-
tion variables (U ,V ). We have studied [13] the geometric
landscape of problem (8) with a minor modification to the
objective function:

minimize
U ,V

‖UV T − Y ‖2F +
µ

2

(
‖U‖2F + ‖V ‖2F

)
. (9)

Despite the change of the objective function, the global min-
imizers remain unchanged. That is, any (U ,V ) that mini-
mize (9) are also a global minimizer of (8).

We have shown [13] that every critical point of problem
(9) is either a global minimum or a strict saddle point. This
implies that local search algorithms such as gradient descent
can be applied to problem (9) and will converge to a global
minimum of (9). As previously noted, this then coincides with
a global minimum of the original objective function, (8). This
favorable geometry of problem (9) holds under the condition
that there exists a global minimizer of (7) having rank r′ and
that r ≥ r′.

One can generalize the unconstrained centralized prob-
lem (9) to an equality-constrained distributed problem sim-
ilar to the global consensus problems outlined in Section 3.
Suppose the columns of the data matrix Y are distributed
among J nodes/sensors. Without loss of generality, partition
the columns of Y as Y =

[
Y1 Y2 · · · YJ

]
where for

j ∈ {1, 2, . . . , J}, matrix Yj (which is stored at node j) has
size n×mj , and where m =

∑J
j=1mj . Partitioning V sim-

ilarly as V =
[
V T
1 V T

2 · · · V T
J

]T
, where Vj has size

mj×r, we can write ‖UV T−Y ‖2F =
∑J
j=1 ‖UV T

j −Yj‖2F .
We use this fact to plug in for the term ‖UV T −Y ‖2F which
appears in (9).

Suppose we introduce in problem (9) the optimization
variables U1, . . . ,UJ ∈ Rn×r (all the same size as U ) and
add an equality constraint to enforce consensus among these
variables. We obtain the equality-constrained optimization
problem

minimize
U ,{Vj},{UJ}

 J∑
j=1

‖U jV T
j − Yj‖2F +

µ

2
‖Vj‖2F


+
µ

2
‖U‖2F subject to U j = U , ∀ j,

(10)
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which has the form of global consensus problem appearing
in (2) by takingw = vec(U), zj = vec(Vj),wj = vec(U j),
and defining fj(wj , zj), g(w) in the natural resulting way.
By applying Corollary 1, we obtain the following result.

Corollary 2. xUC = [vec(U); vec(V1); · · · ; vec(VJ)] is
a [first-order/second-order/strict saddle] critical point of
problem (9) iff xECD = (xUC , [vec(U); · · · ; vec(U)]) is a
[first-order/second-order/strict saddle] critical point of prob-
lem (10). Moreover, under the condition that there exists
a global minimizer of (7) having rank r′ and that r ≥ r′,
for every second-order critical point xECD of problem (10),
xUC is a global minimizer of problem (9).

We apply GADMM to solve (10). [23, Theorem 3.1]
shows that, under suitable conditions, GADMM is guaranteed
to converge to a second-order critical point of (10). Although
we do not confirm those conditions for the matrix factoriza-
tion problem (10), we use numerical simulations to illustrate
the ability of GADMM to reach solutions that correspond to
global minimizers of the centralized problem (9).
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 ∑
j ‖U

jV T
j −U ?V ?

j ‖
2

F∑
j ‖U

j
−U‖2F

Fig. 1. Solving (10) by using GADMM (6).

To set up the experiments, we first generate the rank-r
ground truth matrix Y # = [Y #

1 · · · Y #
J ] ∈ Rn×Jm (m =∑J

j=1mj) where r = 2, n = 50, J = 10, mj = 20 ∀j by
multiplying two standard Gaussian matrices (i.e., each entry
i.i.d. fromN (0, 1)) of size n×r and r×m, respectively. Then
adding a noise matrixN ∈ Rn×m with each entry i.i.d. drawn
from N (0, σ2

Z) with σZ = 0.1, we get the noisy observation
Y = Y # +N . In this case, the signal-to-noise ratio can be
computed as SNR = 10 log10

(
E
[
‖Y #‖2F

]
/E
[
‖N‖2F

])
=

10 log10(
r
σ2
Z
) = 23 dB .

To estimate the ground truth, we then solve (10) with µ =
1 by using GADMM (6) with ρ = 10, β = 1000 and a random
initialization. To verify our main results (cf. Corollary 2),
we plot the optimality distance

∑J
j=1 ‖U jV T

j − U?V ?
j ‖2F

and consensus error
∑J
j=1 ‖U j − U‖2F as a function of the

number of iterations, where (U?, [V ?
1 · · · V ?

J ]) is a global
minimizer of problem (9). Figure 1 shows that the GADMM
achieves both global optimum and exact consensus.

A. PROOF OF THEOREM 1

Proof. The first-order critical points x of Problem UC are
those that satisfy

∇xc(x) = 0. (11)

The second-order critical points of Problem UC additionally
satisfy

∇2
xc(x) � 0, (12)

and a first-order critical point is a strict saddle if it does not
satisfy (12).

The critical points (x,y) of Problem ECD are defined
through the Lagrangian function L(x,y,λ) = d(x,y) −
λT(Ax +By − b). The first-order critical points (x,y) of
Problem ECD are those that satisfy the first-order optimality
condition: Ax+By = b and there exists λ such that

∇[
x;y

]L(x,y,λ) = 0. (13)

The second-order critical points of Problem ECD additionally
satisfy the second-order optimality condition:

[∇2[
x;y

]L(x,y,λ)](v,v) ≥ 0 ∀v ∈ T , (14)

where

T ={v =
[
vx;vy

]
: Avx +Bvy = 0}=

[
Rn

−B−1A(Rn)

]
(15)

is the tangent plane of the constraint set F = {Ax +By =
b}, where we have used the nonsingularity ofB. A first-order
critical point is a strict saddle if it does not satisfy (14).

For convenience, define

h(x,y) := d(x,y)− c(x), (16)

and note that h(x,y) = 0 for all (x,y) ∈ F . Note that
h(x,y) has zero directional derivative and zero Hessian cur-
vature along the tangent plane of F . That is

∇[
x;y

]h(x,y)Tv = 0 and [∇2[
x;y

]h(x,y)](v,v) = 0

(17)
for any (x,y) ∈ F and v ∈ T .

For any x, let y = B−1(b−Ax) and note that (x,y) ∈
F . Moreover, (13) holds iff ∇[

x;y
]d(x,y) = [A B]Tλ,

which holds iff
[
∇xc(x); 0

]
+ ∇[

x;y
]h(x,y) ⊥ T (due

to (15) and (16)), which holds iff
[
∇xc(x); 0

]
⊥ T (due

to (17)), which holds iff (11) holds (due to (15)). Similarly,
we have that (14) holds iff [∇2[

x;y
]c(x)](v,v) ≥ 0 ∀v ∈ T

(due to (16) and (17)), which holds iff (12) holds (due to (15)).
This completes the proof of the three types of equivalence be-
tween a critical point x of Problem UC and a critical point
(x,B−1(b−Ax)) of Problem ECD.
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