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ABSTRACT

Algorithms for dictionary learning aim to learn a dictionary un-
der which training data have sparse representations. This paper ad-
dresses the dictionary update sub-problem, the goal of which is to
update the dictionary and the corresponding sparse coefficients given
a fixed sparsity pattern. It is a non-convex bilinear inverse prob-
lem, and hence challenging to solve. Inspired by a recent work by
Ling and Strohmer, we re-formulate the dictionary update problem
as a linear least squares problem, which is convex and easy to solve.
Necessary bounds on the number of training samples required for
a unique solution are derived when exact sparsity pattern is known.
Further, for dictionary update with unknown sparsity patterns, an ef-
ficient iterative algorithm based on total least squares is developed.
Embedding the new dictionary update procedure into an overall dic-
tionary learning algorithm achieves better numerical performance
compared to state of the art algorithms.

Index Terms— Bilinear inverse problem, dictionary learning,
dictionary update, linear least squares, total least squares

1. INTRODUCTION

Methodologies of sparse signal representation have been used
in a wide range of signal processing applications, including denois-
ing [1, 2], deconvolution [3], super-resolution [4, 5], etc. They are
rooted in the idea that natural signals tend to have sparse represen-
tation under certain bases/dictionaries. Hence, finding a dictionary
under which a given data set can be represented in a sparse man-
ner, has become a very active area of research [6, 7]. More formally,
dictionary learning is the problem of finding a dictionary DDD ∈ Rm×l

such that the training samples in YYY ∈Rm×n can be written as YYY =DDDXXX
where the coefficient matrix XXX ∈ Rl×n is sparse. Clearly, this prob-
lem is a non-convex bilinear inverse problem, and therefore chal-
lenging to solve in general.

The bilinear dictionary learning problem is typically solved by
alternating between two stages: sparse coding and dictionary update
[6–11]. In the sparse coding stage, the goal is to find sparse represen-
tations xxxi of training samples yyyi under a given dictionary DDD. For that
purpose, scores of algorithms have been developed. They can be di-
vided into two main categories. The first category consists of greedy
algorithms, including orthogonal matching pursuit (OMP) [12], reg-
ularized orthogonal matching pursuit (ROMP) [13], and subspace
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pursuit (SP) [14]. In the second category, sparse coding is formu-
lated as a convex optimization problem using `1-norm [15] and then
solved via optimization techniques, e.g. the fast iterative shrinkage-
thresholding algorithm (FISTA) [16]. Reviews of sparse recovery
algorithms can be found in [17, 18].

The goal of the dictionary update stage is to refine the dictio-
nary so that the training samples yyyi can be better represented. In
the probabilistic framework of dictionary updating, one may apply
either maximum likelihood (ML) estimator [6] or maximum a pos-
teriori (MAP) estimator [9], and then solve them by using gradient
descent procedures. Using the same objective function as in [6],
Engan et al. [8] proposed the method of optimal directions (MOD)
where the sparse coefficients XXX are fixed and the dictionary update
problem is cast as a least squares problem which can be solved ef-
ficiently. Several modifications of MOD were proposed in [19–21].
An approach alternative to MOD, where the sparse coefficients are
fixed in the dictionary update stage, is to update both the dictionary
and the sparse coefficients while fixing the support of non-zero co-
efficients, i.e., the sparsity pattern. In the famous K-SVD algorithm,
developed by Aharon and Elad [7], the dictionary is updated itera-
tively, in particular, in each iteration one dictionary atom and its cor-
responding coefficients are updated simultaneously. A combination
of K-SVD and MOD was proposed in [22]. More recently SimCO
algorithm was developed [10] for updating simultaneously multiple
(or all) dictionary atoms and the corresponding coefficients, of which
K-SVD is a particular case.

This paper focuses on the problem of dictionary update, where
both the dictionary and the sparse coefficients are updated given a
sparsity pattern. Our main contributions are as follows. 1) Inspired
by the approach in [23, 24], we re-cast this bilinear inverse prob-
lem as a linear least squares problem which can be solved efficiently
and admits a unique solution (up to scaling factors), when the dic-
tionary is either under-complete or complete and the given sparsity
pattern is exact. 2) Two necessary conditions for the uniqueness of
the solution (exact dictionary recovery), expressed as lower bounds
on the size of the sampling set, are derived. The two bounds are
asymptotically identical when the dimensions of the dictionary, the
number of training samples, and the number of nonzero sparse coef-
ficients approach infinity proportionally. 3) A practical algorithm is
developed for scenarios where the sparsity pattern is not known. It
is based on total least squares, and when embedded into the overall
dictionary learning process it leads to better performance and faster
convergence rate compared to state of the art.
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2. DICTIONARY LEARNING AND BILINEAR
DICTIONARY UPDATE PROBLEM

The overall dictionary learning problem is often formulated as:

min
DDD,XXX
‖YYY −DDDXXX‖2

F , s.t. ‖xxxi‖0 6 k , ∀i (1)

where xxxi is the i-th column of XXX , ‖xxxi‖0 denotes the number of non-
zero elements, also known as sparsity level of xxxi, and k� l is an
integer upper bounding the sparsity level of xxxi.

Most dictionary learning algorithms alternate between two
stages: sparse coding and dictionary update. In the sparse cod-
ing stage, the dictionary is fixed and columns of sparse coefficient
matrix XXX are found by solving

min
xxxi
‖yyyi−DDDxxxi‖2

2, s.t. ‖xxxi‖0 6 k , ∀i , (2)

using greedy algorithms, for example OMP [12] and SP [14].
The second step, dictionary update, is where various dictionary

learning algorithms differ. For example, MOD method simply solves
a least squares problem: minDDD ‖YYY −DDDXXX‖2

F , when coefficient matrix
XXX is fixed from the first stage.

In many other methods, the dictionary update problem is defined
as finding the dictionary and the corresponding sparse coefficients
with a fixed sparsity pattern:

min
DDD,XXX
‖YYY −DDDXXX‖2

F , s.t. PΩc(XXX) = 000 (3)

where Ω is the support set of sparse matrix XXX , Ωc denotes its com-
plement, and PΩc(·) is an operator that retrieves the values of the
entries of XXX indexed by Ωc.

One way to solve the bilinear inverse problem (3) is K-SVD,
which updates one dictionary atom and the corresponding row of XXX
at a time while fixing all the others:

{d̂dd j0 , X̂XX j0,:}= arg min
ddd j0 ,XXX j0 ,:

‖

(
YYY − ∑

j 6= j0

ddd jXXX j,:

)
−ddd j0 XXX j0,:‖

2
F , (4)

where XXX j,: denotes the j-th row of XXX . This is achieved by ap-
plying singular value decomposition (SVD) to the residue matrix
RRR j0 =

(
YYY −∑ j 6= j0 ddd jXXX j,:

)
. Another way to handle (3) is to update

all the dictionary atoms in DDD simultaneously using gradient descent
method; see SimCO [10].

The focus of this paper is to solve (3) using the linear least
squares approach.

3. EXACT DICTIONARY RECOVERY

This section focuses on the case when the dictionary can be ex-
actly recovered by assuming that the training samples in YYY are gener-
ated from YYY = DDD0XXX0 where DDD0 is a tall or square matrix (m > l) and
the sparsity pattern of XXX0 is given. For compositional convenience,
we focus on the case where DDD0 is a square matrix, DDD0 ∈ Rm×m, as
the same analysis is valid for a tall dictionary.

The bilinear inverse problem (3) is equivalent to

Find DDD,XXX

s.t. YYY = DDDXXX ,PΩc(XXX) = 0.
(5)

Define HHH = DDD−1. Then by using HHHYYY = XXX , the problem in (5) can be
re-cast as:

Find HHH,XXX

s.t.
[
HHH XXX

] YYY

−III

= 000, s.t. PΩc(XXX) = 000,
(6)

which is a linear least squares problem with linear constraints. To
avoid trivial solutions, further linear constraints ∑ j hi, j = 1, ∀i, are
added in practice.

As solutions of bilinear inverse problems are not unique in gen-
eral, we define a class of equivalent solutions in the context of unique
dictionary recovery.

Definition 1 (Unique Recovery). The bilinear dictionary update
problem (5) admits a unique solution if all feasible solutions satisfy
DDD = DDD0ΣΣΣ and XXX = ΣΣΣ

−1XXX0, where ΣΣΣ is an arbitrary non-singular
diagonal matrix.

Based on the definition, a necessary sampling bound for unique
recovery is given as folllows:

Theorem 1 (Rough Necessary Bound for Exact Dictionary Recov-
ery). Assume that the number of nonzero elements in each column of
XXX0 is ki, i = {1,2, ...,n} and DDD0 is square and invertible. If bilinear
problem (5) has unique solution, then n > m+ ∑

n
i=1 ki
m .

This theorem is proved by using the fact that the solution is
unique only if the number of independent equations is at least the
number of unknown variables.

Other than the rough bound given in Theorem 1, two more nec-
essary bounds are also derived, which provide more insight into ex-
act dictionary recovery. To proceed, for an arbitrary integer k < l
(l = m for complete dictionaries), we define a Bernoulli-Gaussian
distribution BG( k

l ) of vectors.

Definition 2. A vector xxx satisfies the Bernoulli-Gaussian distribu-
tion BG(θ) with parameter θ ∈ [0,1], if xxx = ωωω � ccc, where ωωω is an
iid Bernoulli(θ ) vector, and ccc∼ N(0, III) is a Gaussian random vector
which is independent of ωωω .

Theorem 2 (Fine Necessary Bounds for Exact Dictionary Recov-
ery). For the dictionary update problem (5), suppose that DDD0 is
square and invertible and columns of XXX0 satisfy iid Bernoulli-
Gaussian distribution BG( k

m ).
For any given constant ε ∈ (0,1), if the programming (6) re-

covers DDD0 and XXX0 with probability at least (1− ε), the number of
training samples n > max(n1,n2) where

n1 =

[
2(m−1)− m·log( ε

m )

2(m−k)

]
+

√[
2(m−1)− m·log( ε

m )

2(m−k)

]2
−4(m−1)2

2 · (1− k
m )

n2 =
log
(

2m(m−1)
ε

)
log
(

m2

k2+m(m−k)

) .
(7)

Remark 1. When m is large, n1 =O(C1(
k
m ,ε) ·m), n2 =O(C2(

k
m ,ε) ·

log(m)), where C1(
k
m ,ε) and C2(

k
m ,ε) are constants which depend

on the sparsity k
m and probability threshold ε .
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Fig. 1 shows that the necessary bounds in Theorem 2 matches
the numerical simulations even for relatively small m,k,n. In the
simulations, Gaussian dictionaries DDD0 ∈ Rm×m are used and the
sparse coefficients are generated according to Definition 2.
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Fig. 1: Comparison between the necessary bounds in Theorem 2 and
numerical simulations. The two numbers n1 and n2 in Theorem 2 are
calculated using ε = 0.01 and depicted as solid and dashed lines, re-
spectively. The circles are simulated minimum sampling ratios n/m
that achieve >99% recovery rate in 100 trials (i.e. 100% recovery
rate).

In the asymptotic regime, the necessary bounds in Theorem 2
can be highly simplified.

Corollary 1 (Asymptotic Necessary Bound of Theorem 2). With the
same settings in Theorem 2, assume that m,k,n→ ∞ with k

m → k̄ ∈
R+ and n

m → n̄ ∈ R+. If the programming (6) uniquely recovers the
dictionary with probability arbitrary close to 1, then n̄ > 1

1−k̄ .

In the same asymptotic regime in Corollary 1, the rough neces-
sary bound in Theorem 1 meets the fine bound in Corollary 1. Sup-
pose that ki = k and m,k,n→∞ with k

m → k̄ ∈R+ and n
m → n̄∈R+.

Divide both sides of the necessary bound in Theorem 1 by m. Then
one has n̄≥ 1+ n̄k̄ which is equivalent to n̄≥ 1/

(
1− k̄

)
.

We note that there were attempts in the literature [25–27] to ana-
lyze the sufficient bound on the number of training samples for exact
dictionary learning of complete dictionaries. Their algorithms sug-
gest a sampling complexity of O(m2 log(m)) for complete dictionary
learning problem with O(m) non-zeros per column.

4. INEXACT DICTIONARY RECOVERY

This section focuses on cases where exact dictionary recovery
cannot be guaranteed. The first is the case when the dictionary is
complete or under-complete but the sparsity pattern of XXX0 contains
errors. This case is important for the overall dictionary learning as
the sparse coding stage may not be perfect. The second is the case of
over-complete dictionaries, i.e., the number of the dictionary atoms
is larger than their dimension. This case is also important as typical
applications of dictionary learning involve over-complete dictionar-
ies.

4.1. Under-Complete/Complete Dictionary

When the given sparsity pattern is inexact, there may not exist
DDD and XXX s.t. YYY = DDDXXX and PΩc(XXX) = 000. Hence, instead of finding
a sparse representation to exactly match data YYY , consider finding a
sparse representation that approximates data YYY in some optimal way.

In particular, consider the following optimisation problem:

min
ỸYY ,DDD,XXX

∥∥YYY − ỸYY
∥∥2

F , s.t. ỸYY = DDDXXX , PΩc (XXX) = 000 ,

or equivalently,

min
ỸYY ,HHH,XXX

∥∥YYY − ỸYY
∥∥2

F , s.t. HHHỸYY = XXX , PΩc (XXX) = 000. (8)

We design an iterative process to solve this problem sub-
optimally based on the total least squares method [28]. With a
slight abuse of notations, denote the sparse coefficients at the begin-
ning of each iteration by XXX , and let YYY = ỸYY +∆∆∆Y and XXX = X̃XX +∆∆∆X . In
each iteration, we replace the objective function (8) with

min
ỸYY ,HHH,X̃XX

∥∥∥[∆∆∆T
Y ,∆∆∆

T
X

]∥∥∥2

F
, s.t. HHHỸYY = X̃XX , PΩc

(
X̃XX
)
= 000. (9)

In (9), the equality HHHỸYY = X̃XX implies that the columns of ỸYY span the
same m-dimensional subspace spanned by the columns of X̃XX . And
this subspace can be approximated by singular value decomposition
(SVD) of the matrix

[
YYY T ,XXXT ]. More specifically, let the SVD of[

YYY T ,XXXT ] be[
YYY T XXXT

]
=
[
UUUY UUUX

]ΣΣΣY 000

000 ΣΣΣX

VVVYY VVVY X

VVV XY VVV XX

T

.

It follows that

ỸYY T
=UUUY ΣΣΣYVVV T

YY ,

X̃XXT
=UUUY ΣΣΣYVVV T

XY ,

HHHT =VVVYYVVV T
XY .

In other words, given YYY and XXX , the SVD gives the optimal solution
of

min
ỸYY ,HHH,X̃XX

∥∥∥[∆∆∆T
Y ,∆∆∆

T
X

]∥∥∥2

F
, s.t. HHHỸYY = X̃XX .

However, the obtained X̃XX may not have the required sparsity pattern.
To enforce that, we simply set XXX such that

PΩ (XXX) = PΩ

(
X̃XX ,
)

and PΩc (XXX) = 000.

With this updated XXX , we are able to go to the next iteration until
the iterative process converges or a preset number of iterations is
reached. The above procedure is not guaranteed to find the global
minima of either (8) or (9). However, our simulations show that it
achieves good performance in practice.

4.2. Over-complete Dictionary

The above least squares approach cannot be directly applied
to updating over-complete dictionaries. To observe that, consider
YYY = DDD0XXX0. As DDD†

0DDD0 6= III, it holds that DDD†
0YYY 6= XXX0, so either (6)

or (8) is not valid. To address this issue, a simple approach is to
divide the whole dictionary into a set of sub-dictionaries each of
which is either complete or under-complete, and then update these
sub-dictionaries one-by-one whilst keeping all other sub-dictionaries
and the corresponding coefficients fixed. We repeat this process for
all sub-dictionaries and refer to this dictionary update algorithm as
Blotless.
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5. NUMERICAL TEST FOR DICTIONARY LEARNING

This section compares the performance of dictionary learning
with different dictionary update methods. OMP [29] is adopted for
sparse coding for simplicity. A direct comparison of dictionary up-
date without involving sparse coding is omitted here due to the space
constraint.

Numerical tests are conducted for both complete dictionary and
over-complete dictionary learning using synthetic signals (simula-
tions involving real data are omitted here due to space limitation).
A Gaussian random matrix DDD0 ∈ Rm×l is generated, and its column
are normalized to a unit l2 norm, to create a ground truth dictionary.
Then, n data signals of dimension m are produced as columns of
measurement matrix YYY . Each of the column vector is the linear com-
bination of k random dictionary atoms in DDD0, and the corresponding
coefficients are independently generated from the standard Gaussian
distribution.

We define the mean dictionary recovery error using Rerr =
1
l ∑

l
p=1

(
1−|d̂ddT

p ddd0 jp
|
)
, where d̂ddp is the p-th recovered atom and

jp = argmax j∈Jp{|d̂dd
T
p ddd0 j |> 0.9}, Jp = {1,2, ..., l}\{ j1, j2, ..., jp−1},

is the ground truth atom index which best matches d̂ddp. This defi-
nition quantifies the difference between the learned dictionary and
the ground truth dictionary used to generate training samples, taking
possible permutations of dictionary atoms into consideration.
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(d) m = 64,k = 5, l = 128, 150 iter.

Fig. 2: Comparison of different methods for the noise free case:
results are averages of 100 trials

Numerical comparisons in the mean dictionary recovery error
and convergence rate are given in Figures 2 and 3, corresponding to
the noise free case and the noisy case, respectively. The benchmark
algorithms that the Blotless is compared against are MOD, K-SVD
and SimCO. The first row of Fig. 2 compares the convergence rate
of different algorithms. Both complete and over-complete dictionar-
ies are considered and the number of training samples are chosen to
make sure that exact recovery is possible for all algorithms. Sim-
ulation results clearly indicate that Blotless converges much faster
than the others. The second row of Fig. 2 compares the number
of training samples needed for the exact dictionary recovery. The

maximum number of iterations is chosen to be 150 according to the
results in the first row of Fig. 2. Again Blotless is clearly the win-
ner as it requires much fewer training samples for both complete
and over-complete dictionary learning. Now we repeat the same nu-
merical comparison in Fig. 3 for the noisy case by assuming that
SNR=15dB, except that we only have the space in this conference
paper to include the results for complete dictionary learning. Once
again, Blotless is the clear winner in terms of both convergence rate
and the number of training samples required for the exact recovery.
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Fig. 3: Comparison of methods for the noisy case: m= 64,k = 5, l =
64, SNR = 15dB, results are averages of 100 trials

Note that the minimum number of iterations does not necessarily
mean the fastest run-time of an algorithm. Table 1 compares the run-
time of different dictionary learning methods using Matlab 2018a on
a Windows laptop with 8GB RAM and Core i5 7300HQ processor.
The results presented in the table show that K-SVD runs faster when
the sparsity level k is relatively small. This is not a surprise: K-SVD
is based on SVD of matrices whose sizes depend on the sparsity
levels of the rows of XXX , while in Blotless the sizes of the matrices
involved in SVD remain constants independent of the sparsity level.
Hence, as results further show, Blotless runs the fastest as the number
of nonzeros in the sparse coefficients increases.

Table 1: Comparison of the run-time (in seconds) of different dictio-
nary learning methods (the noise free case). Results are shown with
the same parameters m = 64, l = 128,n = 800 and the same stop
criterion Rerr < 0.01 (When k = 8,10, SimCO converges without
meeting the stop criterion).

K-SVD MOD SimCO Blotless

k = 4 1.4973 2.7961 26.8629 7.0811

k = 6 4.3242 10.5076 37.9067 13.4822

k = 8 51.4784 69.7387 : 28.9088

k = 10 132.7302 248.6604 : 60.0417

6. CONCLUSION

This paper focuses on solving the bilinear inverse problem of
dictionary update with a given sparsity pattern. The main contribu-
tions include a least squares approach for the case where exact dic-
tionary recovery is expected, necessary conditions for the exact re-
covery in terms of the minimum size of the sampling set, and a block
total least squares (Blotless) approach for more practical cases where
it is not clear whether exact dictionary recovery is possible. When
embedding the new dictionary update process to dictionary learning,
Blotless requires fewer training samples and converges faster.
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