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ABSTRACT

Robust Matrix Completion (RMC) is the problem of estimating a
low-rank matrix in the presence of missing entries and element-wise
(sparse) outliers. In this work, we study the RMC problem with
the extra assumption that the clean data is generated from either a
fixed or a slowly-changing low-dimensional subspace and introduce
a provably correct online algorithm for solving it. Our problem can
also be interpreted as that of Robust Subspace Tracking with miss-
ing data (RST-miss); with “robust” referring to robustness to sparse
outliers. Our proposed method, called NORST-miss-robust, and its
guarantee both rely on the Recursive Projected Compressive Sens-
ing (ReProCS) framework introduced in our earlier work. We also
argue that NORST-miss-robust enjoys near-optimal memory com-
plexity, tracks subspace changes with near-optimal delay, and has
time complexity that is order-wise equal to that of vanilla PCA. De-
tailed experimental comparisons showing the practical advantages of
our method are also shown.

Index Terms— Robust Matrix Completion, Online algorithm

1. INTRODUCTION
Robust Matrix Completion (RMC) is the problem of estimating a
low-rank matrix by observing a subset of its entries some of which
may also be corrupted by sparse outliers. Key applications include
recommendation system design, detection of anomalous behavior in
dynamic social networks and video analytics. In recommendation
systems, only a small subset of data is observed because all users do
not label all items, while sparse outliers occur due to users entering
a few wrong ratings, which could be due to typographic errors or
malicious intent. In video analytics, foreground occlusions are often
the source of both missing and corrupted data: if the occlusion is
easy to detect by simple procedure such as color-based thresholding,
then the occluding pixel can be labeled as “missing” while if this
cannot be detected easily, it is labeled as an outlier pixel. Missing
data also occurs due to detectable video transmission errors.

In this work, we study RMC with the extra assumption that the
true data belongs to a fixed, or slowly changing, low-dimensional
subspace. Assuming that the subspace changes slowly enough, this
is one (but not the only) way of imposing that the resulting true data
matrix is low-rank. We focus on developing an online algorithm that
assumes that the observed (missing and corrupted) data comes in one
matrix column at a time and we would like to estimate the subspace
changes within a short delay. This problem can also be referred to as
robust subspace tracking with missing data (RST-miss).

Related Work. Our problem is closely related to two lines of
work. In the first line of work the objective is to recover a low-rank
matrix and in the second line of work the goal is to track the sub-
space in which the true data lies. The first line of work evolved from

A longer version of this document [1] has been submitted to IEEE Trans-
actions on Signal Processing.

Matrix Completion (MC) and Robust PCA (RPCA) literature. MC
aims to recover a low-rank matrix by observing only a small subset
of its entries, while RPCA aims to decompose the observed matrix
into a sum of low-rank and sparse matrix. MC was studied in [2–5]
while provable RPCA solutions include [6–10]. Also see [11,12] for
comprehensive overviews. RMC is a generalization of both RPCA
and MC since it tolerates both missing and corrupted entries. The
first provable algorithms for RMC [6,13] proposed to solve the con-
vex relaxation of the problem and thus, were slow. Recently, two
other provable non-convex approaches have been developed [8, 14]
- both are projected Gradient Descent based approaches and are sig-
nificantly faster. These works prove that if the maximum fraction of
outliers in any row or column is bounded by O(1/r), one can prov-
ably recover the low-rank matrix with number of observed entries
O(n poly(r, logn)) entries as long as the set of observed entries is
generated by i.i.d. Bernoulli model1. [15] makes an attempt at relax-
ing the identically distributed part of this assumption.

The second line of work evolves from Subspace Tracking (ST).
ST has been extensively studied in both the controls’ and the signal
processing literature, see [12, 16–18] for comprehensive overviews.
Best known existing algorithms for ST and Subspace Tracking with
missing entries (ST-miss) include PAST [19, 20], PETRELS [21]
and GROUSE [22–25]. Although there has been a lot of work in
this space none of them provide provable guarantees in the setting
of changing subspaces. The best known algorithms for Robust ST
(RST) include GRASTA [26] and ReProCS [27–30] but only Re-
ProCS provides provable guarantees. Analogous to RMC, Robust
Subspace Tracking with missing data (RST-miss) is a generalization
of RST and ST-miss. The best known algorithms that tackle this
problem include GRASTA [26], APSM [31], and ROSETA [32].
There are no theoretical guarantees for GRASTA and ROSETA
while APSM comes with only a partial guarantee: the result does
not tell us what assumptions the algorithm inputs need to satisfy in
order to ensure that the algorithm output(s) will be close to the true
value(s) of the quantity of interest either at all times, or at least at
certain times.

Contributions. In this paper, we develop a simple modi-
fication of a recursive projected compressive sensing (ReProCS)
based algorithm, ReProCS-NORST (for Nearly Optimal RST via
ReProCS) [30] to solve the RMC or RST-miss problem. We call it
NORST-miss-robust. We demonstrate that under a few simple as-
sumptions, it provably solves the RMC and RST-miss problems. Our
guarantee is the first complete guarantee for RST-miss and, in fact,
also for any online solution to RMC. Here “complete guarantee”
means that, under simple assumptions on only the algorithm inputs
(measurements and initialization), we show that, with high proba-
bility (w.h.p.), the output subspace estimates are close to the true

1A set Ω that is randomly sampled from a universe, U , is said to be “i.i.d.
Bernoulli with parameter ρ” if each entry of U has probability ρ of being
selected to belong to Ω independent of all others.
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Original Corrupted NORST-miss-rob (31.6ms) GRASTA (25ms) PG-RMC (11ms) RPCA-GD (13.5ms)

Fig. 1: Background Recovery with foreground layer, and Moving Object missing entries (ρ = 0.98). We show the original, observed and
recovered frames at t = 1755 + {12, 503} for the Meeting Room video. NORST-miss-robust exhibits artifacts, but is able to capture most
of the background information, whereas, GRASTA, PG-RMC and RPCA-GD fail to obtain meaningful estimates.

data subspaces at all times. Moreover, we can obtain an ε-accurate
subspace estimate within a short (near-optimal2) delay. Our result
allows time-varying (piecewise-constant with time) subspaces, and
can provably detect and track each changed subspace quickly. Fi-
nally, our algorithm has near-optimal memory complexity and has
time-complexity equal to a rank-r vanilla SVD upto constant fac-
tors. For high-dimensional data sets memory complexity is often as
important as time-complexity. Detailed experimental comparisons
are provided to back up these claims, e.g., see Fig. 1.

In constrast with past work on RMC, our result does not require a
probabilistic model (e.g. i.i.d. Bernoulli) on either the set of missing
entries or the set of outlier entries. The tradeoff is that we allow
much fewer missing entries and need the subspace changes to be
slow enough compared to the minimum nonzero outlier magnitude.

Notation. [a, b] refers to all integers between a and b, in-
clusive, [a, b) := [a, b − 1], and MT denotes a sub-matrix of M
formed by columns indexed by entries in T . ‖ · ‖ refers to the l2
norm of a vector, and the spectral norm of a matrix. A basis ma-
trix is a tall matrix with orthonormal columns. For basis matrices
P̂ , P , that are used to denote two r-dimensional subspaces, we
use SE(P̂ ,P ) = ‖(I − P̂ P̂ ′)P ‖2 to quantify the subspace er-
ror [33], or the sine of the largest principal angle between P̂ ,P . We
let L̂t;α := [ ˆ̀t−α+1, · · · , ˆ̀

t]. r-SV D[M ] refers to the matrix of
top r left singular vectors of the matrixM . We reuse C, c to denote
different numerical constants in each use.

Problem Statement. At each time t, we observe a data vector
yt ∈ Rn that satisfies

yt = PΩt(`t + gt) + νt, for t = 1, 2, . . . , d. (1)

where PΩt(zi) = zi if i ∈ Ωt and 0 otherwise. Here νt is small
unstructured noise, Ωt is the set of observed entries at time t, and
`t is the true data vector that lies in a fixed or slowly changing low
dimensional subspace of Rn. In other words, `t = P(t)at where
P(t) is an n×r basis matrix with r � n and SE(P(t−1),P(t))� 1.
Finally, gt’s are sparse outliers and define xt := PΩt(gt). We use
Tsparse,t to denote the support of xt. This is the part of the outliers
that actually corrupt our measurements, and hence we only work
with xt in the sequel. Defining3 Tmiss,t = Ωct as the set of missing
entries at time t, we have

yt = PΩt(`t) + xt + νt = `t − ITmiss,tITmiss,t

′`t + xt + νt

2“Near-optimal” means the required delay is order-wise within logarith-
mic factors of the minimum required. Since r data points are needed to define
an r-dimensional subspace, the minimum is r in our setting.

3Here, c denotes the complement set w.r.t. {1, 2, . . . , n}.

The goal is to track span(P(t)) and `t either immediately or within
a short delay.

Writing yt as above allows us to exploit the ReProCS [27, 30]
framework. This was developed originally for solving the RST prob-
lem which involves tracking `t and P(t) from yt := `t + zt + νt
where zt is the sparse (outlier) vector. Observe that (1) can be “re-
duced” to a RST problem by letting zt ≡ xt − ITmiss,tI

′
Tmiss,t

`t.
Defining the n× d matrix L := [`1, `2, . . . `d], with Y , Z,X ,

Ω and V similarly defined, another way (low-rank matrix recovery
version) to write the RMC problem using (1) is

Y = PΩ(L) +X + V = L+Z + V . (2)

Identifiability. The above problem definition does not ensure
identifiability. If L is sparse, it is impossible to recover it from a
subset of its entries. Moreover, even if it is dense, it is impossible to
recover L if no entries of a few rows (or columns) are observed or
if a few rows (columns) are fully corrupted. Finally, if the subspace
changes at every time t, the number of unknowns (nr) is more than
the amount of available data at time t (n) making it impossible to
recover all of them. One way to ensure subspaces’ identifiability is
to assume that they are piecewise constant with time, i.e., that

P(t) = Pj for all t ∈ [tj , tj+1), j = 1, 2, . . . , J.

with tj+1 − tj ≥ r. Let t0 = 1 and tJ+1 = d. We refer to the tj’s
as the subspace change times.

One way to ensure that L is not sparse is to assume that its left
and right singular vectors are dense [2]. This is the well-known in-
coherence or denseness assumption defined as follows: An n × rP
basis matrix P is µ-incoherent if maxi ‖P (i)‖22 ≤ µ rP

n
(P (i) is

i-th row of P ).
Left singular vectors incoherent is nearly equivalent to impos-

ing the assumption on the Pj’s. As explained in [30, Remark 2.4],
the following statistical assumption on the at’s provides a different
way of imposing right incoherence: We assume that the at’s are
element-wise bounded, mutually independent and identically dis-
tributed (i.i.d.), and have zero mean. We will refer to this as “sta-
tistical right incoherence”. In fact, as we see in Theorem 2.1, an
assumption slightly weaker than i.i.d. suffices.

Motivated by RPCA and MC literature, one way to ensure that
the missing entries (outliers) are spread out is to bound the maxi-
mum fraction of missing entries in any row and in any column. We
use max-miss-frac-row (max-out-frac-row) and max-miss-frac-col
(max-out-frac-col) to denote these fractions. Since NORST-miss-
robust is an online approach that works on mini-batches of α frames,
we actually need to bound the maximum fraction of missing entries
(outliers) in any sub-matrix of Y with α consecutive columns. We
denote this by max-miss-frac-rowα (max-out-frac-rowα).
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Algorithm 1 NORST-miss-robust. We present a simple version of
the algorithm for the case where the subspace change times tj are
known. The actual algorithm that is studied in our guarantee and that
is used in our experiments automatically detects subspace changes.
This is provided in the long version [1].

1: Input: yt, Tmiss,t , P̂init = P̂(ttrain); Output: ˆ̀
t, P̂(t)

2: Param: ωsupp ← xmin/2, ξ ← xmin/15 j ← 1, k ← 1
3: for t > ttrain do
4: Ψ← I − P̂(t−1)P̂(t−1)

′; ỹt ← Ψyt;
5: x̂t,cs ← arg minx

∥∥(x)Tmiss,t
c

∥∥
1

s.t ‖ỹt −Ψx‖ ≤ ξ.
6: T̂t ← Tmiss,t∪ ← {i : |x̂t,cs| > ωsupp}
7: ˆ̀

t ← yt − IT̂t(ΨT̂t
′ΨT̂t)

−1ΨT̂t
′ỹt

8: if t = tj + uα− 1 for u = 1, 2, · · · , then
9: P̂j,k ← r-SV D[L̂t;α], P̂(t) ← P̂j,k, k ← k + 1.

10: else
11: P̂(t) ← P̂(t−1)

12: end if
13: if t = tj +Kα− 1 then
14: P̂j ← P̂(t), k ← 1, j ← j + 1.
15: end if
16: end for
17: Offline: At t = tj +Kα for t ∈ [tj−1 +Kα, tj +Kα− 1]

P̂ offline
(t) ← basis([P̂j−1, P̂j ])

Ψ← I − P̂ offline
(t) P̂ offline

(t)
′

ˆ̀offline
t ← yt − ITt(ΨTt ′ΨTt)−1ΨTt

′yt

2. ALGORITHM AND MAIN RESULT

NORST-miss-robust. Algorithm 1 proceeds as follows. At any
time t, it iterates between (a) a Projected Compressive Sensing (CS)
step in order to estimate the outliers and missing entries, followed
by (b) Subspace Update to update the subspace estimate P̂(t).

Projected CS proceeds as follows. At time t, if the previous sub-
space estimate, P̂(t−1), is an accurate enough estimate of P(t−1),
because of slow subspace change, projecting yt onto the orthog-
onal complement of P̂(t−1) will nullify most of `t (Line 4). Let
Ψ := I − P̂(t−1)P̂(t−1)

′. This means that ‖Ψ`t‖ will be small.
Estimating zt = xt − ITmiss,tITmiss,t

′`t from ỹt := Ψyt is a
noisy sparse recovery problem with partial support knowledge be-
cause zt is supported on Tmiss,t ∪ Tsparse,t. We solve this (Line 5)
using weighted l1-minimization, and exploit the result of [34]. The
sparse recovery problem works because the denseness assumption
on P(t) ensures that Ψ satisfies RIP of level |Tmiss,t|+ 2|Tsparse,t|.
A hard thresholding on the above output (Line 6), and the lower
bound assumption on outlier magnitudes help ensure that Tsparse,t is
accurately recovered. Following this, we perform a least-squares de-
biasing (Line 7) on T̂t = Tmiss,t ∪ T̂sparse,t to compute ẑt. Finally,
the true data vector is recovered by subtraction: ˆ̀

t = yt − IT̂t
′ẑt.

The ˆ̀
t’s are used for the Subspace Update step as follows. Let t̂j

be the time at which the j-th subspace change is detected. Let t̂0 =
ttrain. This step toggles between the “update” and “detect” phases.
It starts in the “update” phase which involves K r-SV D steps with
the k-th r-SV D step done at t = t̂j + kα− 1. Each such step uses
the previous α estimates of ˆ̀

t, i.e., uses L̂t;α. At t = t̂j+Kα−1 :=
t̂j,fin, the update is complete and the algorithm enters the “detect”
phase. To understand the detection strategy, assume that the previous
subspace Pj−1 has been accurately estimated by t = t̂j−1,fin and
denote it by P̂j−1. Let Bt := (I − P̂j−1P̂j−1

′)L̂t;α. At every
t = t̂j−1,fin+uα−1, u = 1, 2, . . . , we detect change by checking

if the maximum singular value of Bt is above a pre-set threshold,√
ωevalsα, or not. A simple version of the algorithm which assumes

tj’s are known is summarized in Algorithm 1.
We initialize the algorithm using AltProj4 [9] on the first ttrain

frames. Replacing all zeros in Y[1:ttrain] by a sufficiently large num-
ber allows AltProj obtain a “good enough” initial estimate.

Main Result. We define max-miss-frac-rowα as follows.
For a time interval, J , let γ(J ) := maxi

1
|J |
∑
t∈J 1{i∈Tmiss,t}

where 1S is the indicator function for statement S. Thus,∑
t∈J 1{i∈Tmiss,t} counts the number of missing entries in row

i of the sub-matrix YJ . So γ(J ) is the maximum missing en-
try fraction in any row of YJ . Let J α denote a time interval of
duration α. Then max-miss-frac-rowα := maxJα⊆[1,d] γ(J α).
Observe also that max-miss-frac-col = maxt |Tmiss,t|/n. Define
max-out-frac-rowα, max-out-frac-col in an analogous way for out-
liers. Also define xmin := mint mini∈Tsparse,t |(xt)i| to denote the
minimum outlier magnitude. Let ∆ := maxj SE(Pj−1,Pj) denote
the maximum subspace change at any tj .

Theorem 2.1. Consider Algorithm 1. Let α := Cf2r logn,
Λ := E[a1a1

′], λ+ := λmax(Λ), λ− := λmin(Λ), f := λ+/λ−.
Pick an ε ≤ min(0.01, 0.03 minj SE(Pj−1,Pj)

2/f). Let K :=
C log(1/ε). If

1. left incoherence and statistical right incoherence: Pj’s are
µ-incoherent; and at’s are zero mean, mutually indepen-
dent over time t, have identical covariance matrices, i.e.
E[atat

′] = Λ, are element-wise uncorrelated (Λ is diago-
nal), are element-wise bounded (for a numerical constant η,
(at)

2
i ≤ ηλi(Λ)); and are independent of Tmiss,t;

2. max-miss-frac-col + 2 · max-out-frac-col ≤ 0.1
µr

;
max-miss-frac-rowα + max-out-frac-rowα ≤ b0 := 0.001

f2
;

3. subspace change:

(a) tj+1 − tj > (K + 2)α = Cf2r logn log(1/ε)

(b) ∆ ≤ 0.8 and 15
√
ηrλ+(∆ + 2ε) ≤ xmin

4. ‖νt‖2 ≤ cr‖E[νtνt
′]‖, ‖E[νtνt

′]‖ ≤ cε2λ−, νt’s zero
mean, mutually independent, and independent of `t;

5. initialization satisfies SE(P̂init,P0) ≤ 0.25

and 15
√
ηrλ+SE(P̂init,P0) ≤ xmin;

then, with probability (w.p.) at least 1− 10dn−10,

1. subspace change is detected quickly: tj ≤ t̂j ≤ tj + 2α,

2. the subspace recovery error satisfies

SE(P̂(t),P(t)) ≤


(ε+ ∆) if t ∈ J1,
(0.3)k−1(ε+ ∆) if t ∈ Jk,
ε if t ∈ JK .

3. at all times t, ‖ ˆ̀
t − `t‖ ≤ 1.2(SE(P̂(t),P(t)) + ε)‖`t‖.

4. Line 17 of Algorithm 1 satisfies ‖L̂offline −L‖2F ≤ ε2‖L‖2F .

Here J1 := [tj , t̂j + α), Jk := [t̂j + (k − 1)α, t̂j + kα) and
JK := [t̂j +Kα+ α, tj+1).

The memory complexity is O(nr logn log(1/ε)) and the time
complexity is O(ndr log(1/ε)).

4AltProj is a popular RPCA algorithm that works based on the method of
alternating projections. The first step of the algorithm is to assign all large
values of the measurement to the sparse-outlier matrix.
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Table 1: Comparing time, memory, and sample complexity, and assumptions. We treat the condition number and incoherence parameter µ as
constants for this table. Here, f(n) = Ω(g(n)) implies that there exist k > 0 and n0 > 0 s.t for all n > n0, |f(n)| ≥ k · |g(n)|

Algorithm Sample complexity Memory Time Observed entries’ Outliers’
# obs. entries, m support support

NNM [6] Ω(nd) O(nd) O(n3/
√
ε) i.i.d. Bernoulli (c) i.i.d. Bernoulli (c)

Projected GD [14] Ω(nr2 logn2 log2(1/ε)) O(nd) O(nr3 logn2 log2(1/ε)) i.i.d. Bernoulli (m/nd) bounded fraction (O(1/r) per row and col)
NORST-miss-rob Ω(nd(1− 1/r)) O(nr logn log(1/ε)) O(ndr log(1/ε)) bounded frac bounded frac.

(this work) O(1/r) per row, O(1) per col O(1/r) per row, O(1) per col
Extra assumptions: Slow subspace change and lower bound on outlier magnitude

The proof is similar to that of [30] and provided in the long ver-
sion of this paper [1, Appendix B]. We can relax the bound on xmin

as done in [30, Remark 2.4] to obtain the following.

Remark 2.2. Assume that the outlier magnitudes are such that the
following holds: xt can be split as xt = (xt)small+(xt)large with
the two components having disjoint supports and being such that,
‖(xt)small‖ ≤ bv,t and the smallest nonzero entry of (xt)large is
greater than 30bv,t = 30 · C · (2ε+ ∆)

√
rλ+ for t ∈ [tj , t̂j + α),

30bv,t = 30 ·C ·0.3k−1(2ε+∆)
√
rλ+ for t ∈ [t̂j +(k−1)α, t̂j +

kα − 1], k = 2, 2, . . . ,K, and 30bv,t = 30 · C · ε
√
rλ+ for t ∈

t̂j +Kα, tj+1). Then all conclusions of Theorem 2.1 hold.

Discussion. Our result proves that NORST-miss-robust tracks
time-varying subspaces to ε accuracy within a delay that is near-
optimal under the following mild assumptions: a lower bound on
most outlier magnitudes, accurate initialization of the first subspace,
slow subspace change, subspace changes are piecewise constant with
time (necessary for identifiability), left and statistical right incoher-
ence assumptions hold, the fraction of missing entries in any column
of L is at most O(1/r) while that in any row (of α-consecutive
column sub-matrices of it) is at most O(1), fraction of outlier en-
tries in any column and in row beingO(1/r) andO(1) respectively,
and the noise νt is small. Observe that it estimates each subspace
to ε accuracy within a delay of at most Cr logn log(1/ε): this is
near-optimal because r is the minimum delay required to find an
r-dimensional subspace even from perfect data. The memory com-
plexity is near-optimal because nr is the memory required to output
the subspace estimate and the complexity is within log factors of
nr. Our result does not need probabilistic models on the set of ob-
served entries and is able to automatically detect subspace changes
quickly. On the negative side, it needs many more observed entries.
We summarize a comparison of the assumptions with state-of-the-art
provable algorithms in Table 1.

3. EXPERIMENTAL COMPARISONS
All time comparisons are performed on a Desktop Computer with
Intel Xeon E3-1200 CPU, and 8GB RAM. The synthetic data ex-
periment is averaged over 100 independent trials. Details regard-
ing data generation and parameter setting are described in the long
version [1]. MATLAB code for NORST-miss-robust is available at
https://github.com/vdaneshpajooh/NORST-rmc.

Synthetic Data. In the first part of this experiment we generate
the data according to (1) and set νt = 0. We generate the first
subspace basis matrix P0 ∈ Rn×r with n = 1000 and r = 30.
We set J = 2, t1 = 4000, t2 = 8000. The basis matrices P1

and P2 are generated according to the model in [26]. The at ∈ Rr
(for t = 1, · · · , d and d = 10000) are generated independently as
(at)i

i.i.d∼ unif[−qi, qi] where qi =
√
f −
√
f(i− 1)/2r for i =

1, 2, · · · , r − 1 and qr = 1. Thus, the condition number of Λ is
f and we set f = 100. We generate the sparse matrix, X using
the Bernoulli model with ρsparse = 0.1 fraction of sparse outliers.
The non-zero magnitudes of X are generated uniformly at random

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-14

-12

-10

-8

-6

-4

-2

0

2 NORST-miss-robust (2.9ms)

GRASTA (2.6ms)

PG-RMC (2.0ms)

RPCA-GD (2.5ms)

Fig. 2: Subspace error plot versus time. Here, ρobs = 0.9 under
Moving Object model and ρsparse = 0.1 with Bernoulli model. Time
taken per frame in milliseconds are shown in parenthesis.

between [xmin, xmax] with xmin = 10 and xmax = 25. We generated
the support of observed entries using the Moving Object Model [29,
Model 6.19] with ρobs = 0.9 fraction of observed entries.

For initialization of NORST-miss-robust, in the first ttrain =
400 data samples, we set (yt)i = 10 for all i ∈ Tmiss,t. The other
algorithm parameters are α = 60, K = 33, ωevals = 7.8 × 10−4,
ξ = xmin/15, and ωsupp = xmin/2 = 5. We compare our algo-
rithm with GRASTA, PG-RMC and RPCA-GD5. We use default pa-
rameters for GRASTA, PG-RMC and RPCA-GD. Observe that only
NORST-miss-robust is able to obtain an accurate estimate since the
missing entries are generated from the moving object model. The
results are presented in Fig. 2.

Real Data. Here we consider the task of Background Recovery.
We evaluate NORST-miss-robust on the Meeting Room video. In
addition to the foreground (sparse outlier) we generate missing en-
tries from the Moving Object model with ρobs = 0.98. We initial-
ize using AltProj with tolerance 10−2 and 100 iterations. We set
ωsupp,t = 0.9‖yt‖/

√
n using the approach of [30]. The compari-

son results are provided in Fig. 1. Notice that GRASTA, PG-RMC
and RPCA-GD fail to accurately recover the background. Although
NORST-miss-robust exhibits certain artifacts around the edges of the
sparse object, it is able to capture most of the information in the
background.

4. CONCLUSIONS AND OPEN QUESTIONS
In this work we proposed a provably correct online, fast, and
memory-efficient algorithm for Robust Matrix Completion. We also
showed that our proposed method, NORST-miss-robust, has com-
petitive experimental performance. Two open questions for future
include: (i) can the required number of observed entries be reduced
(the limiting bound here is the bound on missing fractions per col-
umn); and (ii) can the lower bound on outlier magnitudes be re-
moved?

5These codes are downloaded from https://github.com/
andrewssobral/lrslibrary. We do not evaluate Nuclear Norm
Minimization as RPCA-GD and PG-RMC are significantly faster [8, 14].
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