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ABSTRACT
We propose a new model for blind source extraction where
the source of interest is assumed to be static while the back-
ground noise is dynamic. The model is determined within
short blocks (the same number of sources as that of sensors),
however, the noise subspace can be changing from block to
block. We propose a gradient-based algorithm that jointly ex-
tracts an independent vector component from a set of mix-
tures obeying the model based on maximum quasi-likelihood
principle. Simulations confirm the validity of the approach,
and experiments with real-world recordings show promising
results.

Index Terms— Blind Source Extraction, Underdeter-
mined Mixing, Independent Vector Analysis, Speech En-
hancement

1. INTRODUCTION

Frequency-domain Independent Component Analysis (FDICA)
has been a popular method for blind separation of audio sig-
nals that were recorded in a reverberated room [1]. FDICA
operates in a Short-term Fourier Transform (STFT) domain
by applying ICA to each frequency bin [2]. The observed
data in the kth frequency bin are described as a determined
instantaneous mixture

xk = Aksk, k = 1, . . . ,K, (1)

where sk and xk denote the d× 1 vector of random variables
representing the original and mixed signals (their STFT val-
ues in frames), respectively; the signals are modeled as i.i.d.
sequences. Ak denotes the d× d nonsingular mixing matrix;
K is the number of frequency bins in the STFT.

In ICA, sk are assumed to be mutually independent and
non-Gaussian. When the frequency bins are treated separately
as in FDICA, there is the permutation problem (separated sig-
nals have random orders) [3]. Therefore, Independent Vector
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Analysis (IVA) has been proposed that separates K mixtures
jointly. The separated frequency components belonging to the
same source, represented by a vector component, are assumed
to be mutually dependent [4]. The jth vector component is
denoted as sj = [s1j , . . . , s

K
j ]T . Similarly to ICA, s1, . . . , sd

are assumed to be independent.
In ICA and IVA, the same number of sources as is the

number of microphones is assumed (determined mixing),
which causes certain limitations, especially, in highly dy-
namic and underdetermined mixing environments. For exam-
ple, in CHiME-3 and CHiME-4, multi-channel noisy record-
ings of a speaker were considered [5], where the position
of the speaker is almost static (small movements with head)
while the background is dynamic and quickly changing. The
background involves various sounds such as cars passing by,
environmental noises (street, cafeteria, bus), other speakers,
etc. Motivated by these situations, we propose an advanced
mixing model for situations like these.

In the proposed model, we assume that the observed sig-
nals can be described as the determined mixture (1) during
short intervals (blocks). The mixing matrix and the distribu-
tions of sources can be varying from block to block, up to
the first column of the mixing matrix, which is assumed to be
constant. The first source can thus represent a static speaker.
The proposed model is described through

xk,m = Ak,msk,m, (2)

where m is the block index, m = 1, . . . ,M . The first column
of Ak,m, denoted by ak,m1 , is independent of m, so it can be
denoted as ak = ak,m1 . The first source will be denoted by
sk,m = sk,m1 and its corresponding vector component, for the
mth block, as sm = [s1,m, . . . , sK,m]T . The mixing matri-
ces Ak,m are assumed to be square and non-singular, so the
model can be referred to as block-wise determined.

This model is suitable when only the static source should
be extracted (Blind Source Extraction - BSE). By rewriting
xk,m in the form

xk,m = Ak,msk,m = aksk,m + yk,m, (3)

where yk,m denotes the dynamic part of the mixture, we can
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formulate the main assumption: sk,m and yk,m are indepen-
dent. For the joint extraction, we will also assume that the
elements of sm are mutually dependent as in IVA [4, 6].

It should be noted that if Ak,m, m = 1, . . . ,M , share any
other constant column, the corresponding (static) source can
also play the role of the source to be extracted. To prevent
from extracting a different static source, we assume that an
initial (approximate) value of ak, k = 1, . . . ,K, is given.

In the following, we derive a gradient algorithm for the
proposed joint extraction problem based on the maximum
quasi-likelihood approach. Section 3 is devoted to simula-
tions and Section 4 describes an application to the CHiME-4
recordings.

2. BLOCK-WISE INDEPENDENT VECTOR
EXTRACTION

To extract the signal of interest (SOI) from K block-wise
determined mixtures, we will modify the approach recently
proposed in [6] referred to as Independent Vector Extraction
(IVE). IVE is designed for extracting the vector component
sm jointly from theK mixtures xm = [x1,m; . . . ;xK,m], that
is, considering one block only. For K = 1, IVE coincides
with Independent Component Extraction (ICE) [7, 8].

2.1. Determined mixtures

For now, let us consider only one block. In IVE, the de-
mixing matrix is parametrized to separate xk,m into two in-
dependent components: the extracted source sk,m and the
other background signals zk,m (spanning the same (d − 1)-
dimensional subspace as yk,m). Owing to (3), the de-mixing
matrix can have the following structure:

Wk,m =

(
wk,mH

Bk

)
=

(
βk,m∗

hk,mH

gk −γkId−1

)
, (4)

where wk,m = [βk,m;hk,m] is the separating vector such that
sk,m = (wk,m)Hxk,m, and ak = [γk;gk]. The structure of
Bk, which depends purely on ak, guarantees that zk,m =
Bkxk,m does not contain any contribution of sk,m when ak

is the true mixing vector, because Bkak = 0.
The free parameters in (4) are represented by wk,m and

ak. These vectors should be both related to the same source
sk,m (the separating and the mixing vector, respectively).
However, they are linked only through the distortionless
condition (wk,m)Hak = 1. It might thus happen that the es-
timated values of wk,m and ak eventually do not correspond
to the same source. To prevent from this unwanted result, the
orthogonality constraint (OG) can be applied; see, e.g., [9].

OG means that wk,m and ak are linked so that the sample-
based correlations between the estimates of sk,m and zk,m are
zero. Specifically, OG requires that

(wk,m)H Ê[xk,m(xk,m)H ]Bk = (wk,m)HĈk,m
x Bk = 0,

(5)

where Ê[·] denotes the sample averaging operator, and
Ĉk,m

x = Ê[xk,m(xk,m)H ] denotes the sample-based cor-
relation of xk,m. In [9] it is derived that, together with the
distortionless condition (wk,m)Hak = 1, the OG means

wk,m =
(Ĉk,m

x )−1ak

(ak)H(Ĉk,m
x )−1ak

. (6)

In the statistical model, we assume that the joint pdf of
sm, denoted by pm(sm), is non-Gaussian. Since each zk,m

is a mixture of unknown latent variables, and IVE does not
aim at further analysis of its components (as opposed to
ICA/IVA), it is reasonable to exploit only its second-order
statistics and assume that the pdf of zm = [z1,m; . . . ; zK,m],
denoted by pzm , is Gaussian.

From the assumption that sm is independent of zm, the
log-likelihood function for one sample of xm reads [6]

Lm(xm|{ak,wk,m}Kk=1) = log pm (sm)−

−
K∑

k=1

{
(zk,m)HRk,mzk,m + log |detWk,m|2

}
, (7)

where Rk,m is the inverse of the covariance matrix of zk,m.
Since this matrix is not known, it is later replaced by the in-
verse of the sample-based covariance of the current estimate
of zk,m, i.e., by Ê[zk,m(zk,m)H ]−1 (the quasi-likelihood ap-
proach).

By taking the average of (7) over the samples available for
the mth block, and by setting Rk,m = Ê[zk,m(zk,m)H ]−1, it
can be shown as in [6] that the gradient of (7) subject to ak

under the constraint (6) is

∂Lm

∂ak
= wk,m − λk,m(Ĉk,m

x )−1Ê[xk,mψk,m(sm)], (8)

where λk,m = [(ak)H(Ĉk,m
x )−1ak]−1, and ψk,m(sm) =

−∂/(∂sk,m) log pm(sm) is the kth score function of pm.
Since these score functions are not known, they are replaced
by an appropriate nonlinearity φk(sm) (for simplicity, let us
select φk which is independent of m). Then, φk must be
normalized so that Ê = [sk,mφk(sm)] = 11, so the modified
gradient reads

∆k,m = wk,m− λk,m(Ĉk,m
x )−1Ê[xk,mφk(sm)]/νk,m, (9)

where νk,m = Ê[sk,mφk(sm)].
The gradient algorithm, referred to as OGIVEa, being ini-

tialized by an approximate values of the true a1, . . . ,aK , it-
erates by performing small updates in the directions given by
∆k,m, that is,

ak ← ak + µ∆k,m, (10)

where µ is a step size constant. After each update, the sepa-
rating vector wk,m is recomputed according to (6). The opti-
mization is stopped when the norm of ∆k,m is smaller than a
selected threshold.

1The nonlinearity must be normalized so that the true value of ak is the
stationary point of the contrast (for infinite number of samples) [10, 6].
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The observed signals can be whitened before OGIVEa is
applied so that Ĉk,m

x = I, where I denotes the identity matrix.
It is an often used pre-processing step in ICA/IVA. In that
case, (6) simplifies to wk,m = ak/‖ak‖2.

2.2. Algorithm for block-wise IVE

Now, we start considering all M blocks, and we take the
advantage of the fact that ak is constant over the blocks for
all k = 1, . . . ,K. The contrast function is obtained through
averaging (7) over the blocks, because, in the model, sam-
ples are assumed to be independently distributed. Hence,
also the gradient of the quasi-log-likelihood contrast (9) can
be averaged over the blocks, by which we obtain ∆k =
1
M

∑M
m=1 ∆k,m.

Then, the gradient update is, similarly to (10), ak ←
ak +µ∆k. Owing to the scaling ambiguity, it is useful to nor-
malize ak after each update so that its first element is equal to
one2. The block-dependent separating vectors are computed
using (6). A pseudocode of the proposed method, from here
referred to as BOGIVEa (Block-wise OGIVEa), is described
in Algorithm 1.

2.3. OGIVEa vs. BOGIVEa, and BOGIVEw

To see the main differences between OGIVEa and BOGIVEa,
consider these algorithms if they were applied to the entire
batch of data (considering all blocks) obeying the model (2).
While OGIVEa optimizes mixing and separating vectors that
are constant over blocks, BOGIVEa assumes different sepa-
rating vector in each block as follows from lines 7-8 in Al-
gorithm 1. From line 7 it follows, that the outputs of the al-
gorithms are different, especially, when Ĉk,m

x is significantly
block-dependent, and vice versa.

The whitening of input signals can be done also before
BOGIVEa is applied, which means thatM−1

∑M
m=1 Ĉ

k,m
x =

I. However, compared to OGIVEa, it is not possible to sim-
plify (6) to wk,m = ak/‖ak‖2 in BOGIVEa, because the
sample-covariances on blocks remain different from the iden-
tity matrix after the whitening.

The idea of the block-determined modeling can be real-
ized also in a variant where the mixing vectors ak,m related to
the SOI are varying from block to block while the separating
vector wk is constant. A gradient algorithm derived based on
this model will be denoted BOGIVEw, however, details are
not provided here due to lack of space.

3. SIMULATIONS

As a proof of concept, we conduct a simulated experiment
with d = 6, M = 5, andK = 3. Signals are mixed according

2This normalization of ak such that (ak)1 = 1 means that the scale of
the extracted signal corresponds to that of its contribution (image) on the first
input channel [11].

Algorithm 1: BOGIVEa: Block-wise orthogonally
constrained independent vector extraction

Input: xk,m,akini (k,m = 1, 2, . . . ), µ, tol
Output: ak,wk,m

1 foreach k = 1, . . . ,K do
2 Ĉk,m

x = Ê[xk,m(xk,m)H ];
3 ak = akini/(a

k
ini)1;

4 end
5 repeat
6 foreach k = 1, . . . ,K, m = 1, . . . ,M do
7 wk,m ← ((ak)H(Ĉk,m

x )−1ak)−1(Ĉk,m
x )−1ak;

8 sk,m ← (wk,m)Hxk,m;
9 end

10 foreach k = 1, . . . ,K, m = 1, . . . ,M do
11 νk,m ← Ê[sk,mφk(sm)];
12 Compute ∆k,m according to (9);
13 end
14 foreach k = 1, . . . ,K do
15 ak ← ak + µ∆k;
16 ak ← ak/(ak)1;
17 end
18 until max{‖∆1‖, . . . , ‖∆K‖} < tol;

to (2). The first signals in the K mixtures are drawn indepen-
dently from the circular Laplacean distribution and mixed by
a random unitary matrix, so they are dependent (but uncorre-
lated). The other signals are circular Gaussian. The length
of each block is Nb = 1000 samples; the entire batch has
N = 3000 samples. Each signal in each block is multiplied
by a random factor from [0.01, 1] (random variance). Then,
the global power (block-averaged variance) of the first signal
is re-scaled so that it is equal to the average global power of
the other signals. The mixing matrices are drawn from the
uniform distribution; the real part in [1; 2] and the imaginary
part in [0, 1]; their first columns are constant over the blocks.

To extract the SOI from the kth mixture, the compared al-
gorithms are initialized by a perturbed value of the true mix-
ing vector, that is, by akini = ak + ekini, where ekini is ran-
dom and orthogonal to ak, and ‖ekini‖2 = ε2. Then, the ex-
tracted signal is obtained using the separating vectors com-
puted according to (6) where ak is the estimated mixing vec-
tor. Signal-to-Interference Ratio (SIR) is computed as the ra-
tio between the block-averaged powers of the SOI and of the
background signals in the extracted signal.

We have compared several BSE algorithms in 1000 inde-
pendent trials. It is not surprising that methods assuming the
mixing model (1) such as OGIVEa, One-unit FastICA [12]
or Natural Gradient [13] failed to estimate the mixing vector
in this experiment, because the mixtures are block-wise de-
termined (the resulting SIR is typically below or near 0dB).
Therefore, we do not show results of these algorithms.
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Fig. 1. Histograms of the output SIR (in dB) achieved by BOGICEa and BOGIVEa in 1000 trials (K×1000 = 3000 mixtures)
for various levels of the initial perturbation ε. To compare, the SIR obtained with the initial value of the mixing vector is shown.

BOGIVEa, assuming the true number (and length) of the
blocks, has been applied either to each of K mixtures sepa-
rately as in ICE (the approach referred to as BOGICEa) or
jointly (BOGIVEa). The nonlinearity used by the algorithm

is φk(sm) = tanh∗(sk,m)/
√∑K

`=1 |sk,`|2. The problem of
choosing an appropriate nonlinearity is beyond the scope of
this paper; see, e.g., [4, 14, 15].

The histograms in Fig. 1 show that the achieved SIRs are
often higher than the SIRs obtained with the initial mixing
vector values, which proves the efficiency of the proposed
algorithms. The number of successful extractions (SIR sig-
nificantly higher than 0 dB) is decreasing with growing ε2,
which follows the fact that akini must lie in the region of con-
vergence of the BSE algorithm to extract the SOI [6]. Finally,
BOGIVEa outperforms BOGICEa on average as it takes the
advantage of the joint extraction.

4. EXPERIMENTAL RESULTS

Here, we show results achieved on the CHiME-4 dataset
of six-channel3 recordings [5]. The dataset contains simu-
lated (SIMU) and real-world (REAL) noisy utterances. Some
recordings involve microphone failures. A method from
[16] is used to detect these failures, and the malfunctioning
channels are excluded.

The compared methods are used to extract speech from
noisy recordings, and the enhanced signals are forwarded to
the baseline speech recognizer from [5]; the achieved Word
Error Rate (WER) is the final criterion. We operate in the
STFT domain with the FFT length 512 and hop-size 128 using
the Hamming window; the sampling frequency is 16 kHz.

Interestingly, BOGIVEa did not succeed compared to
BOGIVEw in this experiment. This could be explained by
the fact that speakers are performing small movements (vary-
ing mixing vector). Therefore, we apply BOGIVEw (with
Nb = 170 ≈ 1.3 s) instead. It is initialized by the Rela-
tive Transfer Function (RTF) estimator from [17] which is

3Microphone two is not used in the experiments as it is oriented away
from the speaker.

System Development Test
REAL SIMU REAL SIMU

Unprocessed 9.83 8.86 19.90 10.79
BeamformIt 5.77 6.76 11.52 10.91
GEV (VAD) 4.61 4.65 8.10 5.99

OGIVEw 5.59 4.96 9.51 6.34
BOGIVEw 5.64 4.84 8.98 6.21

BOGIVEw (VAD) 5.39 4.62 8.54 6.30

Table 1. WERs [%] achieved in the CHiME-4 challenge.

(or is not) improved by Voice Activity Detector (VAD) as in
[16]. The VAD is a feed-forward neural net (DNN) trained
on the training set of CHiME-4. It estimates speech presence
probability in the STFT domain.

The results are shown in Table 1. BeamformIt [18] is the
baseline preprocessor of CHiME-4. The Generalized Eigen-
value Beamformer (GEV) from [19, 20] is one of the most
successful enhancers in CHiME-4. In these experiments, it
is endowed with a feed-forward DNN-based VAD. All the
methods significantly improve the WER compared to the un-
processed case. The best results are achieved by GEV and by
BOGIVEw (VAD). BOGIVEw without the DNN-supported
initialization and BeamFormIt stand for fully unsupervised
approaches. BOGIVEw significantly outperforms BeamFor-
mIt and its results are comparable with that of GEV.

5. CONCLUSIONS

The block-wise determined model was shown to be useful
alternative when modeling underdetermined mixtures where
only a target source should be extracted. The model can in-
volve up to (d− 1)M + 1 sources. BOGIVEw derived based
on this model has been successfully applied in CHiME-4,
showing competitive results to supervised DNN-based ap-
proaches. Simulations show that there is room for improve-
ments in terms of the global convergence of the algorithm,
which will be subject of our future research.
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