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ABSTRACT

This paper investigates localization of an arbitrary number of simul-
taneously active speakers in an acoustic enclosure. We propose an
algorithm capable of estimating the number of speakers, using re-
liability information to obtain robust estimation results in adverse
acoustic scenarios and estimating individual probability distributions
describing the position of each speaker using convex geometry tools.
To this end, we start from an established algorithm for localization of
acoustic sources based on the EM algorithm. There, the estimation
of the number of sources as well as the handling of reverberation
has not been addressed sufficiently. We show improvement in the
localization of a higher number of sources and in the robustness in
adverse conditions including interference from competing speakers,
reverberation and noise.

Index Terms— Acoustic source localization, number of speak-
ers estimation, diarization, EM algorithm

1. INTRODUCTION

Acoustic source localization is an essential task for many signal pro-
cessing applications, e.g., steering a beamformer or a camera to the
position of interest. If multiple distributed sensor nodes, i.e., an
Acoustic Sensor Network (ASN), are available, source localization
algorithms can benefit from the different perspectives on the acous-
tic scene provided by the distributed nodes. This additional informa-
tion fueled the research in the field of acoustic source localization,
and a variety of algorithms for localization in ASNs have been pro-
posed. Most of them are based on triangulation of node-wise Direc-
tion of Arrival (DOA) estimates, e.g., [1], [2]. If the environment
is fixed, e.g., a smart home scenario, learning-based localization ap-
proaches [3], [4] can be used, which are trained based on acoustic
features labeled by the corresponding positions in the room. Sub-
sequently, the trained algorithm is capable of source localization
based on unlabeled data and unseen positions. Examples for this
class of algorithms are neural network-based methods [5], [6], man-
ifold learning approaches using Relative Transfer Functions (RTFs)
as features [7] or the distributed learning-based approach of [8] rely-
ing on the Coherent-to-Diffuse power Ratio (CDR). However, these
learning-based localization algorithms rely on labeled training data,
gathered in a specific environment. In [9], a method which relies on
amodel-based EM source separation and localization (MESSL), was
presented. In this method, STFT-based features are used to estimate
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the Time Difference of Arrival (TDOA) of multiple speakers by us-
ing Gaussian Mixture Model (GMM) clustering. To this end, a set of
candidate source TDOAs is created where each of them is associated
with a single Gaussian component. The estimated source TDOA is
given by the candidate associated with the highest probability. The
MESSL algorithm for TDOA estimation has been extended to a mul-
tichannel version in [10] and to support reverberant and noisy envi-
ronments [11, 12], where [12] directly uses the raw data as features.
For localizing and tracking acoustic sources in an ASN, the ideas of
the MESSL algorithm have been exploited in [13], opening the door
for multiple applications and extensions: a distributed version of the
algorithm has been proposed in [14], and the GMM-based model has
been replaced by a mixture of von Mises distributions in [15] to take
the directionality of the feature into account.

In this paper, we propose an algorithm extending [13] by ad-
dressing three of its prominent shortcomings. Firstly, reverberation
and additive noise, which invariably impair the observed signals in
any enclosure, render many time frequency bins useless for the lo-
calization task by introducing a bias to the estimate. This has been
addressed by a model of the human hearing system in [16]. How-
ever, there are a lot of algorithmic parameters to be chosen for this
model. Secondly, the estimation of an unknown number of speak-
ers introduces further challenges, and currently, it does not have a
satisfactory solution: the number of sources is either assumed to
be known or determined by thresholding the probability map [14].
However, the optimum threshold depends on the number of speakers
as well as on the reverberation and noise level, and is hence difficult
to set. Thirdly, the estimation of the positions of multiple speakers
[14, 15] requires the extraction of local maxima from the estimated
probability map. Alternatively, multiple maps, each corresponding
to only one speaker, could be estimated [9, 13], but the performance
of this algorithm highly depends on an appropriate initialization of
the individual maps using coarse prior knowledge about the position
of the speakers [13], which is usually not available. To counteract
the deteriorating effect of reverberation, we propose to incorporate
reliability information from acoustic scene analysis by controlling
the influence of each single observation on the estimate into the pro-
posed algorithm. This is accomplished by applying a weighted Ex-
pectation Maximization (EM) algorithm [17]. To this end, the CDR
[18] is used as a measure of degradation of the bin-wise observation
by reverberation. The CDR has been used for STFT bin-selection
and weighting for localization algorithms relying on the sparsity of
speech signal mixtures in [19, 20]. For localizing an unknown num-
ber of speakers, we pre-estimate the number of speakers and their
probability of dominance over time using methods of convex geom-
etry [21, 22]. The obtained dominance probabilities are exploited
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by the proposed probabilistic model to obtain separate probability
maps for each speaker. This especially improves the localization
performance for a larger number of sources in the acoustic scene.

2. PROPOSED EM-BASED LOCALIZATION ALGORITHM

We consider here a fully synchronized ASN containing M sensor
nodes, each equipped with two microphones observing S sources
at unknown positions. In the following, t € {1,...,7} and k €
{1,..., K} denote the time and frequency indices, and ¢ € {1,2}
and m € {1,..., M} denote microphone and node indices, respec-
tively. We model the ith microphone signal at the mth sensor node
in the STFT domain as

S
T (8, K) =Y W (£, k) (8, k) + vy (£, K), (1)
s=1

where h¢,, denotes the relative transfer function corresponding to
source s € {1, ..., S} describing the acoustic path between the ith
microphone at the mth sensor node and the first microphone of the
first sensor node, which serves as the reference. The image of source
s observed at the reference microphone is denoted by z (¢, k) and
the additive noise at the ith microphone of the mth sensor node is
denoted by v%,. We use the Pair-wise Relative Phase ratios (PRPs)
of each sensor node m

pmt, k) = Zm(LP) |2
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as a feature and stack them in a vector ¢(t, k) = vecy, ¢m (¢, k). We
assume W-disjoint orthogonality, i.e., each STFT bin is dominated
by a single speaker [23] and hence ¢ (¢, k) describes a single speaker.

For each position p from a finite set of candidate target positions
‘P, the candidate PRPs are approximated by the free-field model

3h.0) =exp (<222 (Ip —phll— 0 - ph12) ). @
where p’, denotes the position of the ith microphone at the mth
sensor node, c is the speed of sound, and f}, is the physical frequency
corresponding to STFT frequency index k. The PRPs corresponding
to the different sensor nodes are collected in a vector for concise
notation ¢*(p) = vec, ¢%, (p). By using the complex Gaussian
Probability Density Function (PDF)
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and assuming independence of the observations over time, frequency
and nodes, the data-likelihood can be modeled as the following
GMM with class probabilities ¢p
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Note that we use the same variance o for all Gaussian components
here for simplicity. Here, compared to [13, 14, 15], we introduced
the weighting factor w (¢, k) which favors reliable observations by
assigning a large weight to them [17]. This weighting strategy can be
interpreted as increasing the variance of all Gaussians for erroneous
estimates corresponding to small weights, i.e., an observation with
small weight contributes to all positions in the probability map, and
as it does not favor or penalize a certain position, it does not affect
the localization results.

However, this model does not distinguish between the contribu-
tions of the individual sources. To address this issue, we introduce
probabilities of source dominance Ps(t) at frame ¢ and incorporate
them into the model as convex weights of GMMs representing the
individual sources
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Here, we introduced the abbreviation 9» = vecp s ¥p,s and the set
of fixed parameters © = {w, P}, with w = vec,k,m wm (¢, k) and
P = vec,s Ps(t). The corresponding maximum likelihood param-
eter estimation problem is not straightforwardly solvable in closed-
form. Hence, the latent random indicator variable

1 if observation (¢, k) corresponds to
source s at position p (@)
0 else

Z(t7 k? p? S) =

is introduced which allows to use an EM algorithm for this task. The
auxiliary function, i.e., the posterior mean of the complete data log-
likelihood, is calculated with z = vec k,p,s 2(t, k, P, 5) as
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with [ representing the iteration index and £{-} the expectation op-
erator. The E step is obtained by evaluating the posterior expectation
of the latent variable
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The M step is derived by optimizing the auxiliary function w.r.t.
1p,s. The estimator for the class probabilities of the Gaussian com-
ponents corresponding to the existence of source s at position p is
given by

1 7K
o= e 2 1tk p,s). (10)

t,k=1
Finally, the source positions are estimated by determining the max-
imum of each probability map, i.e., by evaluating the different class
probabilities for each source s

pPs = argmaxq,l)l(,ﬁ;)7 (11)
pEP

where L is the maximum number of iterations.

3. CALCULATION OF OBSERVATIONS RELIABILITY

In Section 2, weights w, (¢, k) have been introduced in (5) to ac-
count for the varying reliability of the observations. This raises the
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question of how to quantify the reliability of observations? Here,
we assume that the source signal consists of a coherent signal com-
ponent, corresponding to the direct path and early reflections, and
a diffuse signal component, corresponding to the late reverberation
and noise. The power ratio of these signal components is called CDR
[18] and has been used for dereverberation [ 18], localization [8], and
bin-selection and weighting in DOA estimation [19, 20]. Note that
the proposed weighting strategy is general and the weights wy, (¢, k)
can be chosen differently, depending on the available information of
the observed signals.

In order to estimate the CDR, the auto- and cross- Power Spec-
tral Density (PSD) of the microphone signals 7, j at node m are esti-
mated by recursive averaging over time

12)
where 4,7 € {1,2} and 0 < p < 1 is a forgetting factor. The com-
plex spatial coherence of the observed microphone signals is then
estimated by

Q'xin'xzn (t7 k) - M(I)'Iinx

D1 42 (t k)
VOt (0023, 02 (1)

The coherence of a diffuse sound field can be expressed in closed
form by (™ (k) = sinc (2 fxdmic,m/c), where sinc(-) denotes the
normalized sinc function and dmic,m denotes the spacing of the mi-
crophones at node m. Here, we use the DOA-independent CDR es-
timator [13], which is a function of I'{"™ (¢, k) and T (k). Finally,
the CDR-based weight is expressed as

CDR,. (t, k)
CDR,,(t,k) +1°°

13)
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to obtain values limited to [0, 1] for convenience. Hereby, € is small
positive number avoiding division by zero in (9).

4. CALCULATION OF SOURCE DOMINANCE
PROBABILITIES

To estimate the number of sources and the frame-wise speaker prob-
abilities, we shortly summarize a recently proposed approach for
speaker diarization based on spectral analysis of the correlation ma-
trix of consecutive time frames [21, 22]. As we assume W-disjoint
orthogonality, the ratio of the STFT bins of the ith microphone at the
mth node w.r.t. the corresponding bins of the first microphone at the
first node is assumed to correspond to an RTF of one of the speakers

R, (t, k) = zj{l (tt : ) Based on this observation, the following real-

valued feature vector a(t) of length D = 2(2M — 1)K is computed
for all time frames

(1) = [Rin(t, 1), R, K)]T,
a®(t) = [a2(t),ad(t),a3(t) ..., ak(t),a (1)] ",

a(t) = [Re{ac(t)}T,Im{ac(t)}T]T. (15)

We assume that there exist a few frames with only one speaker
active, which is a valid assumption for typical human speakers who
have some natural pauses while talking. The aim of this algorithm
is to estimate these frame-wise speaker dominance probabilities
P(t) = [Pi(t), ..., Ps(t)]", which occupy the standard probability
simplex as they have to sum up to one. To this end, the 7" x T

correlation matrix C with elements C,y = 5&{a'(t)a(t')} is
approximated as C ~ BBT [22], where B is a T x S matrix
containing the source dominance probabilities, i.e., By; = P;(t).
Therefore, the rank of the correlation matrix C is equal to the rank
of B and hence to the number of speakers S [21]. The correlation
matrix C is estimated by the approximation Cy; = La'(t)a(t')
(which is statistically justified in [21]). The eigenvalue decompo-
sition of the estimated correlation matrix C = UAU” yields an
orthonormal matrix U containing its eigenvectors u; and a diagonal
matrix A containing its eigenvalues \;. The number of sources can
now be estimated by [21]

S = (argminﬁ < a) -1, (16)
i M

where A1 denotes the largest eigenvalue. Each time frame ¢ can
be represented by a slice of the extracted and sorted eigenvec-
tors as v(t) = [ui(t),...,ug(t)]". These v(t) vectors occupy
a rotated and scaled simplex, whose S vertices {v(ts)}5_; can
be computed with the successive projection algorithm [24]. To
finally obtain the source probabilities per time frame P(t), we con-
struct the back-transformation matrix from the identified vertices
Q = [v(t1),...,v(ts)]", and rotate and scale v/(t) V¢ back to the
standard simplex to obtain the source probabilities

Pt)=Q 'v(b). (17)

The complete localization algorithm is summarized in Alg. 1.

Algorithm 1 Localization of Unknown Number of Speakers

INPUT: Microphone signals z, (¢, k), Vm, t, k, i
Compute PRPs ¢, (¢, k) by (2) and candidate PRPs by (3)
Compute weights w., (¢, k) according to (14)
Estimate source number S using (16) and speaker probabilities
P, (t) Vs, t according to (17)
Initialize probability maps 1) = ﬁ Vs,p € P
for! =1to L do
E step: Estimate soft-assignment of observations to sources
and positions 'y(l)(t, k,p,s) Vt,k,s,p € P by (9)
M step: Estimate probability maps wf,l,)s Vs, p € P via (10)
end for
Estimate source positions by (11)
OUTPUT: Position estimates ps Vs € {1,...,5}

5. EVALUATION

We carried out experiments in a simulated enclosure [25, 26] of di-
mensions 6m X 6m X 3.1 m accompanying M = 12 distributed
microphone pairs (distance between them ~ 1 m) of spacing dmic =
0.2m. All sources and microphones lie in the same plane of 1 m
height. We created J = 25 sets of Room Impulse Responses (RIRs)
for each acoustic condition corresponding to random positions in
the room with a minimum spatial separation of 0.5 m and a distance
from the walls of 1 m. The corresponding simulated RIRs are con-
volved with speech signals of 10 sec duration at a sampling rate of
fs = 16 kHz. We tested speech mixtures according to the speaker
activities depicted in Fig. 1 which represents a situation of a nat-
ural conversation (for S = 1, the speaker is continuously active).
The speech signals were transformed into the STFT domain by a
von Hann window of 50 ms length and frame shift of 10 ms. We
only used the frequency interval [600 Hz, 1000 Hz] as it contains the
most relevant part of the speech signal spectrum. The estimation of
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Fig. 1. Temporal activity of the speakers for S € {2,3}. For S =1,
the speaker is constantly active.
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Fig. 2. Average localization error e for varying reverberation times
and number of sources S. The underlying scenario is noise-free.

the variance o of the model (6) yields always the same value for a
given grid resolution and is hence set to a fixed value 0 = 1. To en-
hance the assignment of the speakers to individual maps, we applied
a threshold to the speakers probability such that Ps(t) is set to zero
if Ps(t) < 0.5, i.e., speaker s only contributes to the corresponding
probability map if it dominates time frame ¢. To maintain a valid
probabilistic model, we normalized appropriately. All probability
maps were initialized with ") = ﬁ Vs,p € P, where | - | de-
notes the cardinality of a set, as no prior knowledge about the source
positions is assumed. The forgetting factor for the estimation of the
PSDs in (12) was set to ¢ = 0.75. The threshold for estimating
the number of speakers was set to & = 0.4. The maximum number
of iterations for the EM algorithm has been set to L = 10. A grid
of 41 x 41 candidate source positions corresponding to a resolution
of 10 cm was used. For the algorithm presented in [13], the asso-
ciation of the estimated source position with the ground truth was
determined in a greedy fashion by minimizing the overall estimation
error and subtracting the corresponding peaks from the probability
map to avoid spurious detections. Note that here some algorithmic
tuning is necessary, which is unnecessary in the proposed method.
For a meaningful comparison and to avoid the problem of quantify-
ing the error when a wrong number of sources S was estimated, we
evaluated the estimation of the number of sources and the estimation
of the position separately. The estimation of the number of sources is
quantified by misdetection (MD) and false alarm (FA) rates, i.e., the
relative amount of undetected and wrongly detected sources. To as-
sess the localization performance of the algorithm, we compute the
position error averaged over J = 25 trials and S € {1, 2, 3} source
signals e = ¢ Z}I:l S5 IPs,j — Ds,jll2, where ps; denotes
the position of the sth source in trial j and ps, ; is its estimate. To ex-
clude the influence of particular source signals, we picked randomly
S out of a set of 7 available source signals in each trial.

To assess the contribution of both the source dominance proba-
bilities and the weights w, (¢, k), we evaluate four different versions
of the algorithm: algorithm [14] as a baseline (Base.), the baseline al-
gorithm with incorporated weighting (Base. + W), and the proposed
algorithm using diarization with (Diar. + W) and without weighting
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Fig. 3. Misdetection and false alarm rates in a noise-free scenario.
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Fig. 4. Average localization error for S = 3 and Tso = 0.3 sec for
varying SNR conditions.
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(Diar.) included. For the comparison of the baseline algorithm with
other state-of-the-art methods, we refer to [13, 14] and do not repeat
this comparison here. The average localization errors for noise-free
scenarios for varying reverberation time (7o) are depicted in Fig. 2.
As the Tso and the number of speakers increase, the advantage of
the proposed extensions becomes more pronounced, where the com-
bination of diarization and weighting (Diar. + W) always performs
best. The corresponding performance in estimating the number of
sources is presented in Fig. 3. It can be observed that the task be-
comes more difficult for increasing reverberation time and number
of speakers, yet the source counting error is still very low even in
adverse scenarios. Finally, the localization error for varying noise
levels at Tso = 0.3 sec and for S = 3 is depicted in Fig. 4. While
the localization error is almost not affected by the investigated lev-
els of white additive Gaussian noise, the same trend can be observed
for all SNRs: the baseline method performed worst, followed by
its weighted version. The diarization approaches performed best,
where the weighting yielded further improvement. Note that due to
the random selection of source signals the results in the presented
experiments vary additionally.

6. CONCLUSIONS

In this paper, we extended an established family of localization al-
gorithms to cope with adverse acoustic scenarios including varying
reverberation times, noise levels, and an unknown number of target
sources. We incorporated reliability measures to weigh the obser-
vations depending on their contribution to the position estimate. A
recently proposed technique for speaker diarization based on con-
vex geometry was applied to estimate the number of speakers and
to thereby allow for the estimation of individual probability distribu-
tions for each source, which circumvents error-prone peak detection
strategies. The efficacy of the proposed algorithm has been demon-
strated in simulations for various realistic scenarios especially as the
number of speakers or the reverberation level increases.
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