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ABSTRACT

Multimodal data fusion is an important aspect of many object local-
ization and tracking frameworks that rely on sensory observations
from different sources. A prominent example is audiovisual speaker
localization, where the incorporation of visual information has
shown to benefit overall performance, especially in adverse acoustic
conditions. Recently, the notion of dynamic stream weights as an
efficient data fusion technique has been introduced into this field.
Originally proposed in the context of audiovisual automatic speech
recognition, dynamic stream weights allow for effective sensory-
level data fusion on a per-frame basis, if reliability measures for
the individual sensory streams are available. This study proposes
a learning framework for dynamic stream weights based on natural
evolution strategies, which does not require the explicit computa-
tion of oracle information. An experimental evaluation based on
recorded audiovisual sequences shows that the proposed approach
outperforms conventional methods based on supervised training in
terms of localization performance.

Index Terms— data fusion, dynamic stream weights, natural
evolution strategies, audiovisual speaker localization, Kalman filter

1. INTRODUCTION

Multimodal signal processing is a widely investigated topic in many
different application areas, ranging from autonomous driving [1] and
smart home applications [2] to object localization and tracking [3].
A specific problem domain of the latter is audiovisual speaker lo-
calization. Various studies have shown that an incorporation of the
visual modality leads to improved performance over conventional
acoustic localization frameworks, especially in noisy and highly re-
verberant conditions [4, 5]. The use of acoustic and visual modal-
ities has gained similar success in related fields like human-robot
interaction [6], speaker diarization [7], speaker identification [8] and
automatic speech recognition (ASR) [9–12].

An essential aspect of all multi-modal processing frameworks is
the appropriate fusion of individual sensory modalities [13]. This
becomes particularly important in highly dynamic scenarios, where
the reliability of each sensory input is changing over time. In the
context of audiovisual speaker localization, this might occur if the
acoustic signals are corrupted by non-stationary background noise or
if speakers can not be detected visually, e.g. because they are look-
ing away from the camera. Several approaches to cope with this
challenge have been proposed in past studies.

The work introduced in [14] utilizes a Kalman filter (KF)-based
framework with a joint audiovisual observation vector to localize
and track speakers during recorded seminars. However, it did not
incorporate any reliability measures into the processing framework.
Instead, data fusion is handled implicitly during the KFs recursive

update step. A different approach was proposed in [15], where a
specific variant of the particle filter (PF) was utilized to localize and
track speakers in a realistic living room scenario. This framework
allowed to explicitly control the individual contribution of acous-
tic and visual input signals via exponential weighting parameters.
These parameters were fixed and determined via a grid search over
a set of recorded audiovisual scenarios. Additionally, many other
approaches to tackle the challenge of audiovisual fusion have been
proposed, cf. [7, 16].

Recently, the notion of dynamic stream weights (DSWs) was
introduced in the context of audiovisual speaker localization [17].
DSWs were initially proposed for audiovisual ASR [9, 10] as a
means to weight acoustic and visual observations on a per-frame
basis. Compared to conventional data fusion techniques, this has
the advantage that the contribution of each modality can be con-
trolled precisely without significant delay. If additional information
about the reliability of sensors is available, this can yield significant
improvements in performance over the use of unimodal or naı̈ve
fusion techniques [9, 18]. The framework proposed in [17] showed
that similar improvements can be achieved for audiovisual speaker
localization by incorporating DSWs into a recursive Bayesian state
estimator for linear dynamical systems (LDSs). Additionally, a
method to obtain oracle dynamic stream weights (ODSWs) from
annotated audiovisual sequences, similar to the approach proposed
for ASR in [9], was introduced in this study. The ability to compute
ODSWs allows DSW estimation models to be learned from anno-
tated training data, which can subsequently be deployed to unseen
test scenarios. This has been extensively studied for ASR, where dif-
ferent acoustic and visual features have been used to predict DSWs
at each frame [10, 18].

The present study investigates the problem of DSW estimation
for LDSs in the context of audiovisual speaker localization and track-
ing. In particular, an inherent problem of DSW estimation based on
oracle information is addressed in this work: the analytic compu-
tation of ODSWs requires a prior to be imposed on the DSW dis-
tribution, cf. [9, 17], which artificially restricts the representational
flexibility of the oracle values. Furthermore, additional hyperparam-
eters that have to be tuned via, e.g., a grid search are introduced into
the learning framework.

This work proposes a new learning scheme for DSW prediction
models using natural evolution strategies (NES) [19]. NES com-
prise a class of black-box optimization techniques, that have recently
shown success in reinforcement learning (RL) based on deep neural
networks (DNNs) [20]. Compared to conventional gradient-descent-
based optimizers, NES are computationally more demanding, but do
not impose any major restrictions on the underlying cost function
(e.g. differentiability). This allows for the derivation of flexible opti-
mization schemes for learning DNN-based DSW prediction models
without the need to explicitly compute oracle information.
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2. SYSTEM OVERVIEW

This section reviews the audiovisual speaker localization and track-
ing system introduced in [17], where DSWs were utilized in a frame-
work based on LDSs. Additionally, the analytic computation of
ODSWs, also proposed in [17], is briefly described. A basic esti-
mator for DSWs inspired by the work in [9,18] will be introduced at
the end of this section.

2.1. State estimation incorporating dynamic stream weights

In the context of speaker localization and tracking applications,
the state of a system that models this process usually refers to the
speaker position and additional dynamic properties like velocity
and acceleration. Throughout this work, Langevin dynamics [21]
are used to model a speaker’s motion. This is incorporated into a
bimodal LDS model

xk = Axk−1 + vk, (1)
yA,k = CAxk + nA,k, (2)

yV,k = CVxk + nV,k, (3)

where xk denotes the state vector at discrete time step k, while yA,k

and yV,k are conditionally independent acoustic and visual obser-
vations. In the context of audiovisual speaker localization, the state
usually corresponds to the latent speaker direction-of-arrival (DoA)
or Cartesian position, whereas the observations are position-related
features. The system dynamics are modeled via the state-transition
matrix A, subject to zero-mean Gaussian noise vk ∼ N (0, Q) with
covariance matrix Q. The acoustic and visual state-to-observation
transformations are denoted as CA and CV, respectively. Both ob-
servations are assumed to be affected independently by zero-mean
Gaussian noise terms nA,k ∼ N (0, RA) and nV,k ∼ N (0, RV)
with covariance matrices RA and RV.

Given sequences of conditionally independent acoustic and vi-
sual observations up to time-step k and introducing scalar DSWs
λk ∈ [0, 1], the joint probability density function (PDF) of the LDS
introduced in Eqs. (1)–(3) can be expressed as

p(x0, . . . , xk, yA,1, . . . , yA,k, yV,1, . . . , yV,k) ∝

p(x0)

k∏
k′=1

p(xk′ |xk′−1)p(yA,k′ |xk′)
λk′ p(yV,k′ |xk′)

1−λk′ (4)

A probabilistic framework to infer the state from audiovisual obser-
vations can be derived using Eq. (4), yielding a recursive Bayesian
estimation scheme similar to the Kalman filter [22]. For a detailed
overview of the resulting inference algorithm, cf. [17].

2.2. Oracle dynamic stream weights

To learn DSW estimation models using supervised methods, ODSWs
are required as targets [9]. A means to obtain such oracle informa-
tion from audiovisual observation sequences with a corresponding
ground-truth state sequence was introduced in [17]. The proposed
method utilized a Gaussian prior with mean µλ and variance σ2

λ to
derive an analytic solution for computing ODSWs at each time-step:

λ?k = µλ + σ2
λ log

{p(yA,k |xk)
p(yV,k |xk)

}
(5)

As pointed out in [9, 17, 18], the parameters µλ and σ2
λ can be ap-

propriately determined via cross-validation.

2.3. Reliability measures

The estimation of DSWs requires measures that correspond to the
individual reliability of each sensory modality at every time step.
Finding appropriate measures for acoustic and visual sensors is a
promising field of research which provides many opportunities for
further investigations. However, the search for novel reliability mea-
sures is beyond the focus of this study. Hence, a more conservative
approach based on the work presented in [9] is taken here. Essen-
tially, three different reliability measures are used throughout this
work: one signal-based and two model-based reliability measures.

The instantaneous estimated a-priori signal-to-noise ratio (SNR)
ξk is exploited here as a signal-based reliability measure of the
acoustic modality. The noise power estimate, required for com-
puting the a-priori SNR is obtained using the method from [23]
and the clean speech power is estimated by a Wiener filter [24].
Additionally, the model-based reliability measures encompass
the instantaneous acoustic and visual observation log-likelihoods,
lA,k = log{p(yA,k |xk)} and lV,k = log{p(yV,k |xk)}, respec-
tively. These measures reflect the current degree of belief in how
far the instantaneous acoustic and visual observations match the
expected observations of the model. The adoption of these model-
based reliability measures was inspired by the work described in [9],
where similar measures based on the instantaneous entropy were
used. In this study, the described reliability measures are combined
in a joint feature vector zk =

[
ξk lA,k lV,k

]T, which will be
serving as input to a suitable mapping function.

It should be noted that the appropriate choice of reliability mea-
sures is an important aspect of DSW estimation. The set of measures
used in this study has been chosen empirically based on the findings
that have been reported in the context of ASR [9, 10, 18]. However,
finding suitable measures through e.g. feature selection or even train-
ing DSW estimation functions end-to-end is beyond the scope of this
paper and will be addressed in future work.

2.4. Mapping functions for dynamic stream weight estimation

After obtaining ODSWs and the corresponding reliability measures
as described in Sections 2.2 and 2.3, it is possible to learn appropriate
mapping functions λ̂k = h(zk |w) with parameters w to estimate
DSWs. In this work, two different mapping functions will be in-
vestigated using conventional supervised training as a baseline: the
logistic function, which has already been used for DSW estimation
in the context of ASR [9, 18] and a feed-forward DNN, supporting
a broader class of nonlinear mappings from reliability measures to
DSWs. Supervised training on the basis of ODSWs is performed
using standard stochastic gradient descent (SGD) for both methods,
where Eq. (5) is used to provide target values at each time-step. This
will be compared against NES-based training, described in detail in
the next section, where the explicit computation of ODSWs is not
required.

3. NATURAL EVOLUTION STRATEGIES

Evolution strategies (ES) are a class of algorithms to solve black box
optimization problems [25], which do not require problem specific
knowledge on the objective function, except for the ability to evalu-
ate the “fitness” of this function for specific parameter settings. The
main concept of ES is to apply a heuristic search procedure to find
a parameter vector that maximizes fitness. The implementation of
these search heuristics is loosely inspired by natural evolution: At
each iteration, a population of candidate solutions is perturbed and
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evaluated, resulting in the best performing candidates to be selected
for the next iteration. This procedure is iterated until an optimum is
reached. A very prominent and widely used ES algorithm is the co-
variance matrix adaptation evolution strategy (CMA-ES) [26], which
represents the population of candidate solutions as a multivariate
Gaussian distribution with full covariance matrix. This method has
been successfully applied in various applications with small dimen-
sionality. However, to cope with high-dimensional problems (e.g.
training DNNs), different methods have to be taken into account.

3.1. Method overview

The present study utilizes NESs, which are a special class of evo-
lution strategies that iteratively update their search distribution via
the natural gradient [19]. Let p(w | θ) and f(w) denote an arbi-
trary search distribution with parameters θ and a corresponding fit-
ness function evaluated for parameter vector w, then the expected
fitness under the search distribution can be expressed as

J(θ) = Eθ{f(w)} =
∫
f(w)p(w | θ) dw. (6)

An estimate of the search gradient can be obtained from N samples
w1, . . . , wN using the so-called log-likelihood trick, which yields

∇θJ(θ) ≈
1

N

N∑
n=1

f(wn)∇θ log{p(wn | θ)}. (7)

For a detailed derivation of Eq. (7), cf. [19]. The approximated
search gradient can subsequently be used to iteratively update the
search distribution via gradient ascent. Instead of optimizing Eq. (6)
based on the plain search gradient directly, NESs utilize the natural
gradient [27] to increase the speed of convergence [19]. If a multi-
variate Gaussian distribution with diagonal covariance matrix is cho-
sen as the search distribution, a very effective NES optimization al-
gorithm applicable for large problem dimensions can be obtained.
This specific implementation of NESs is termed separable natural
evolution strategies (SNES), which has shown to be well-suited for
evolutionary optimization of high-dimensional problems [19].

3.2. Implementation

Learning mapping functions for DSW estimation using NESs
requires a training dataset D = {X , YA, YV, Z} containing
M individual and conditionally independent acoustic and vi-
sual observation sequences YA = {y(m)

A,1 , . . . , y
(m)
A,Km

}Mm=1 and

YV = {y(m)
V,1 , . . . , y

(m)
V,Km

}Mm=1, with corresponding ground-truth

state trajectories X = {x(m)
1 , . . . , x

(m)
Km
}Mm=1 and reliability mea-

sures Z = {z(m)
1 , . . . , z

(m)
Km
}Mm=1. In comparison to the ODSW

estimation problem [17], explicit computation of oracle information
is not required when using NESs. Instead, a fitness function has to
be designed, which reflects the objective that should optimized. For
the application of speaker localization and tracking as considered in
this work, the averaged negative azimuth localization error

f(w) = − 1

M

M∑
m=1

1

Km

Km∑
k=1

(
φ
(m)
k − φ̂(m)

k (w)
)2

(8)

is chosen as an appropriate measure of fitness that should be maxi-
mized. The ground-truth speaker azimuth at time-step k of the m-th
sequence is denoted as φ(m)

k and the corresponding estimated az-

ODSW
estimation

Parameter est.
h(zk |w)

λ?

YA

YV

Z

X

w

ODSW-based training

Z
SNES

optimization
h(zk |w)

w

YA YV X

NES-based training

Fig. 1: Block diagrams of the two different training paradigms inves-
tigated in this study. Ground-truth state trajectories X , audiovisual
observation sequences YA and YV, as well as the corresponding re-
liability measures Z are used as training datasets in both cases. The
set of estimated oracle stream weights is denoted as λ?.

imuth φ̂(m)
k (w) represents the estimate obtained using the state es-

timation framework introduced in Sec. 2.1 with a specific parame-
terization w of the mapping function. Fitness shaping as proposed
in [19, Sec. 3.1] is used in this work to increase robustness of the
optimization algorithm in the presence of different scalings of the
fitness function. The block diagram depicted in Fig. 1 illustrates the
fundamental differences between supervised training using ODSWs
and the NES-based training paradigm.

4. EVALUATION

A performance evaluation of the proposed methods was conducted
in the domain of audiovisual speaker localization. The fundamen-
tal question that is addressed in this work is, whether NES-based
training can benefit DSW estimation over conventional supervised
methods, which require the explicit estimation of ODSWs.

4.1. Dataset

A dataset of audiovisual recordings was collected using the Mi-
crosoft Kinect sensor. The sensor was placed in a reverberant office
room with a reverberation time of approximately 350ms. Ten au-
diovisual sequences of a single moving speaker with a duration of
30 s each were recorded using the described setup. The video signals
were recorded at a frame rate of 20 frames per second (FPS) and
the audio signals were captured using the four-channel microphone
array of the Kinect at a sampling rate of 16 kHz.

The speed and type of movement, as well as the amount of
speech varied between the individual sequences. An example of dif-
ferent conditions captured in the dataset is shown in Fig. 2. All
recorded sequences were manually annotated, where the ground-
truth locations of the speaker’s face were marked at each frame.

4.2. Experimental setup

Acoustic DoA observations were computed at intervals of 50ms
(matching the frame rate of the video signal) from the recorded mi-
crophone array signals using the multiple signal classification (MU-
SIC) algorithm [28] with direct-path dominance (DPD) test [29] to
increase robustness of the acoustic localization in the presence of
reverberation. Visual locations of the speaker’s face were extracted
from the recorded video using the Viola-Jones algorithm [30].
Similar to the previous work proposed in [17], a standard KF serves
as a baseline for comparison. Additionally, state estimation based
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Fig. 2: Snapshots from a recorded audiovisual sequence used during
the experimental evaluation in this work. In the video frame shown
on the left, the speaker is facing the camera, which results in a correct
detection of the speaker’s face (denoted by the yellow rectangle).
This is not possible in the frame on the right side, as the speaker is
facing to the side and some parts of the face are covered by shadows.

on ODSWs as described in Sec. 2.2 is also evaluated, representing
an upper bound on performance. The logistic mapping function for
DSW estimation is used without any modifications, similar to the
work in [9, 18]. A three-layer feed-forward neural network with
rectified linear unit (ReLU) activation functions in the hidden lay-
ers and a softmax output activation function is used as the second
mapping function. The number of neurons in the hidden layers is
determined during nested cross-validation, as described below. Both
mapping functions were trained using either conventional supervised
SGD with ODSWs as targets and cross-entropy loss, or the SNES al-
gorithm as described in Sec. 3.2.

Performance evaluation was conducted using ten-fold nested
cross-validation, where an additional inner cross-validation loop is
utilized for additional tuning of hyperparameters. The hyperparam-
eters in this study were mean and variance of the Gaussian prior for
estimating ODSWs (cf. Sec. 2.2), as well as the number of neurons
in the hidden layers of the neural-network-based mapping function.
The azimuth root mean square error (RMSE) was used as a metric
to evaluate localization performance. It was computed individually
at each frame and subsequently averaged over all sequences.

4.3. Results and discussion

The performance evaluation results are depicted in Fig. 3, where the
logistic function (“LF”) and a feed-forward neural network (“NN”)
are used as mapping functions for stream weight estimation, trained
with either stochastic gradient descent on ODSWs (“SGD”) or us-
ing the separable NES algorithm (“SNES”). Both mapping functions
achieve lower azimuth error when trained using SNES, compared to
SGD-based training. This indicates that the direct utilization of lo-
calization error as an objective function via NESs is advantageous
over conventional supervised training based on ODSW targets.

The SNES-based methods both outperform the standard KF
baseline, whereas SGD training is only able to achieve similar per-
formance to the KF in both cases. It is interesting to note that
both the logistic function, as well as the neural network do not dif-
fer much in terms of performance when trained using SGD. This
indicates that the logistic function already provides adequate rep-
resentational capabilities when using the three reliability measures
proposed in this work. However, the performance of the neural
network might be further improved if a larger amount of training
data is available. When using the SNES algorithm for training, the
neural network slightly outperforms the logistic function, which
seems to be due to a better use of the limited training data and a

Std.
KF

Orac
le

LF (S
GD)

LF (S
NES)

NN
(S

GD)

NN
(S

NES)
0

5

10

15

20
**

****
*

*

A
zi

m
ut

h
er

ro
ri

n
de

gr
ee

s

Fig. 3: Results of the experimental comparison between differ-
ent DSW estimation approaches, averaged over all cross-validation
folds. Similar to the work presented in [17], a standard KF with
joint observation noise covariance matrix (“Std. KF”) serves as a
baseline. The asterisks denote important statistically significant dif-
ferences with ∗ for p < 0.05 and ∗∗ for p < 0.01.

reduced risk of overfitting provided by ESs [19, 20]. Despite the
extended training time that NES-based methods require over SGD,
the improvement in performance indicates that these methods might
be interesting candidates for further research in this direction.

The direct use of ODSWs still achieves a significantly lower lo-
calization error than all other evaluated methods. As this can be in-
terpreted as an upper bound on achievable performance [9], there is
still room for further improvement. However, this outcome addition-
ally confirms the initial results reported in [17] and shows that the
incorporation of DSW into the field of LDSs is beneficial to multi-
modal sensor fusion problems in continuous state spaces.

5. CONCLUSIONS AND OUTLOOK

Focusing attention on different sensory modalities via dynamic
stream weights in linear dynamical systems proved itself as an ef-
ficient sensor fusion strategy in the context of audiovisual speaker
localization, but can also be applied in many other domains. This
study has introduced a novel approach to learn mapping functions
for dynamic stream weight estimation based on natural evolution
strategies. The proposed method does not require the explicit com-
putation of oracle dynamic stream weights, which was required
for previously proposed methods. Despite the longer time needed
to train systems based on natural evolution strategies, this study
has shown that superior performance can be achieved compared to
conventional supervised training based on gradient descent.

Future investigations will focus on a thorough analysis of suit-
able reliability measures. The measures utilized in this study only
serve as a starting point for further research. An in-depth analysis of
different measures by means of feature selection may yield interest-
ing theoretical insights towards the reliability of audiovisual sensors.
Additionally, making the proposed system trainable end-to-end and
extending the inference framework to nonlinear dynamical systems
are further promising research directions.

7896



6. REFERENCES

[1] T. N. N. Hossein, S. Mita, and H. Long, “Multi-sensor data fu-
sion for autonomous vehicle navigation through adaptive parti-
cle filter,” in IEEE Intelligent Vehicles Symposium, June 2010,
pp. 752–759.

[2] H. Medjahed, D. Istrate, J. Boudy, J. Baldinger, and B. Dorizzi,
“A pervasive multi-sensor data fusion for smart home health-
care monitoring,” in IEEE International Conference on Fuzzy
Systems, June 2011, pp. 1466–1473.

[3] S. Shahrampour, M. Noshad, J. Ding, and V. Tarokh, “Online
Learning for Multimodal Data Fusion With Application to Ob-
ject Recognition,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 65, no. 9, pp. 1259–1263, Sept 2018.

[4] A. Ronzhin, A. Ronzhin, and V. Budkov, “Audiovisual speaker
localization in medium smart meeting room,” in Proc. of the In-
ternational Conference on Information, Communications Sig-
nal Processing, December 2011, pp. 1–5.

[5] G. Monaci, “Towards real-time audiovisual speaker localiza-
tion,” in 19th European Signal Processing Conference, August
2011, pp. 1055–1059.

[6] B. Chen, M. Meguro, and M. Kaneko, “Probabilistic inte-
gration of audiovisual information to localize sound source in
human-robot interaction,” in Proc. of the 12th IEEE Interna-
tional Workshop on Robot and Human Interactive Communi-
cation, 2003.

[7] I. D. Gebru, S. Ba, X. Li, and R. Horaud, “Audio-visual
speaker diarization based on spatiotemporal bayesian fusion,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 40, no. 5, 2018.

[8] L. Schönherr, D. Orth, M. Heckmann, and D. Kolossa, “En-
vironmentally robust audio-visual speaker identification,” in
2016 IEEE Spoken Language Technology Workshop (SLT),
Dec 2016.

[9] A. H. Abdelaziz, S. Zeiler, and D. Kolossa, “Learning
Dynamic Stream Weights For Coupled-HMM-Based Audio-
Visual Speech Recognition,” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, vol. 23, no. 5, May
2015.

[10] S. Gergen, S. Zeiler, A. H. Abdelaziz, R. M. Nickel, and
D. Kolossa, “Dynamic stream weighting for turbo-decoding-
based audiovisual ASR,” in 17th Annual Conference of the
International Speech Communication Association, 2016.

[11] J. Freiwald, M. Karbasi, S. Zeiler, J. Melchior, V. Kompella,
L. Wiskott, and D. Kolossa, “Utilizing slow feature analysis for
lipreading,” in Speech Communication; 13. ITG Symposium,
October 2018.

[12] S. Petridis, T. Stafylakis, P. Ma, F. Cai, G. Tzimiropoulos,
and M. Pantic, “End-to-end audiovisual speech recognition,”
in Proc. of the IEEE International Conference on Acoustics,
Speech and Signal Processing, April 2018, pp. 6548–6552.

[13] D. Lahat, T. Adali, and C. Jutten, “Multimodal data fusion: An
overview of methods, challenges, and prospects,” Proceedings
of the IEEE, vol. 103, no. 9, pp. 1449–1477, September 2015.

[14] T. Gehrig, K. Nickel, H. K. Ekenel, U. Klee, and J. Mc-
Donough, “Kalman filters for audio-video source localization,”
in IEEE Workshop on Applications of Signal Processing to Au-
dio and Acoustics, October 2005, pp. 118–121.

[15] S. Gerlach, S. Goetze, and S. Doclo, “2D audio-visual local-
ization in home environments using a particle filter,” in Speech
Communication; 10. ITG Symposium, September 2012, pp. 1–
4.

[16] R. Yan, T. Rodemann, and B. Wrede, “Computational Audio-
visual Scene Analysis in Online Adaptation of Audio-Motor
Maps,” IEEE Transactions on Autonomous Mental Develop-
ment, vol. 5, no. 4, pp. 273–287, December 2013.

[17] C. Schymura, T. Isenberg, and D. Kolossa, “Extending Linear
Dynamical Systems with Dynamic Stream Weights for Audio-
visual Speaker Localization,” in IEEE International Workshop
on Acoustic Signal Enhancement, September 2018, pp. 515–
519.

[18] H. Meutzner, N. Ma, R. M. Nickel, C. Schymura, and
D. Kolossa, “Improving audio-visual speech recognition us-
ing deep neural networks with dynamic stream reliability es-
timates,” in Proc. of the IEEE International Conference on
Acoustics, Speech and Signal Processing, 2017.

[19] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and
J. Schmidhuber, “Natural Evolution Strategies,” J. Mach.
Learn. Res., vol. 15, no. 1, pp. 949–980, January 2014.

[20] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolu-
tion strategies as a scalable alternative to reinforcement learn-
ing,” arXiv preprint arXiv:1703.03864, 2017.

[21] J. Vermaak and A. Blake, “Nonlinear filtering for speaker
tracking in noisy and reverberant environments,” in 2001 IEEE
International Conference on Acoustics, Speech, and Signal
Processing. Proceedings, May 2001, pp. 3021–3024.

[22] R. E. Kalman, “A new approach to linear filtering and predic-
tion problems,” Transactions of the ASME – Journal of Basic
Engineering, vol. 82, no. 1, pp. 35–45, March 1960.

[23] T. Gerkmann and R. C. Hendriks, “Unbiased MMSE-based
noise power estimation with low complexity and low tracking
delay,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 20, no. 4, pp. 1383–1393, May 2012.

[24] R. McAulay and M. Malpass, “Speech enhancement using a
soft-decision noise suppression filter,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 28, no. 2, pp.
137–145, April 1980.

[25] I. Rechenberg and M. Eigen, Evolutionsstrategie: Optimierung
technischer Systeme nach Prinzipien der biologischen Evolu-
tion., Frommann-Holzboog, 1973.

[26] N. Hansen and A. Ostermeier, “Completely derandomized
self-adaptation in evolution strategies,” Evol. Comput., vol.
9, no. 2, pp. 159–195, June 2001.

[27] S. I. Amari, “Natural gradient works efficiently in learning,”
Neural Comput., vol. 10, no. 2, pp. 251–276, February 1998.

[28] R. Schmidt, “Multiple emitter location and signal parameter
estimation,” IEEE Transactions on Antennas and Propagation,
vol. 34, no. 3, 1986.

[29] O. Nadiri and B. Rafaely, “Localization of multiple speakers
under high reverberation using a spherical microphone array
and the direct-path dominance test,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 22, no. 10,
2014.

[30] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” in Proc. of the IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition,
2001.

7897


		2019-03-18T10:58:36-0500
	Preflight Ticket Signature




