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ABSTRACT

In this paper, we propose a new method for blind source sep-
aration, where we perform similarity search for a prepared
clean speech database. The purpose of this mechanism is to
separate short utterances that we frequently encounter in a
real-world situation. The new method employs a local Gaus-
sian model (LGM) for the probability density functions of
separated signals, and updates the LGM variance parameters
by using the similarity search results. Experimental results
show that the method performed very well in an ideal sit-
uation where we employ a close database that contains the
source components used for the mixtures. In more realistic
situations where an open database was used, the separation
performance degraded to a certain degree, but was still better
than existing methods.

Index Terms— frequency domain blind source separa-
tion, local Gaussian model, variance parameter, similarity
search, Itakura-Saito divergence

1. INTRODUCTION

Blind source separation (BSS) is a technique for estimat-
ing individual source components from their mixtures [1, 2].
When the sources are sounds in a real room environment, they
are mixed with delay and reverberations, (i.e., convolutive).
A typical approach to such convolutive mixtures is frequency
domain BSS [3] where we transform the time-domain mix-
tures into time-frequency domain complex coefficients by
using short-time Fourier transform (STFT).

For solving the frequency domain BSS problem, most
existing methods rely on statistical properties of sources,
such as independence or low-rank structures. Regarding
independence, independent component analysis (ICA) [4]
could be employed to separate the mixtures in each frequency
bin. However, we need to solve the permutation problem
[5] afterwards to align the order ambiguities of ICA solu-
tions. Independent vector analysis (IVA) [6–10] separates the
mixtures so that the permutation problem is solved automat-
ically by considering the independence of vectors that span
all frequency bins. Regarding low-rank structures, indepen-
dent low-rank matrix analysis (ILRMA) [11] assumes that a
separated signal has a spectrogram structure of a lower rank
than a mixture has. All such methods need to obtain enough

amount of observations, say sound mixtures of 3 seconds or
more, so that the statistical properties work effectively.

This paper proposes a new BSS method that separates
shorter observations, say sound mixtures of 2 seconds or less,
by performing similarity search on a prepared clean source
database. We human can separate sound mixtures easily if
there is something familiar to us in the mixtures. The new
method is inspired by and tries to imitate such human ability.

Preparing a source database is similar to the situations of
supervised learning. For the task of source separation, many
supervised methods have been proposed such as basis decom-
position using nonnegative matrix factorization (NMF) [12],
and more recent deep neural network (DNN) based methods
[13–19]. These methods need a supervised training phase that
sometimes is very time consuming. The proposed method
does not need such a time consuming training phase.

The proposed method, as well as some of the aforemen-
tioned existing methods, employs a local Gaussian model
(LGM) [20–22] for the probability density functions of sep-
arated signals. The next section formulates the problem of
frequency domain BSS, and reviews the existing methods em-
ploying LGMs. Section 3 explains the proposed method as a
natural extension of the LGM-based BSS methods for utiliz-
ing a clean source database. Section 4 reports experimental
results. Section 5 concludes this paper.

2. FREQUENCY DOMAIN BSS

Let xftm ∈ C be the STFT coefficient of the mixture at fre-
quency bin f , time frame t, and sensor m. Having M sen-
sors, these coefficients are summarized in a vector form as
xft = [xft1, . . . , xftM ]T ∈ CM . Having F frequency bins
and T time frames, the purpose of frequency domain BSS is
to separate the mixtures xft, f = 1, . . . , F , t = 1, . . . , T by

yft = Wfxft (1)

where yft = [yft1, . . . , yftN ]T ∈ CN is the vector of N sep-
arated signals and Wf is the N ×M frequency-bin specific
separation matrix

Wf =

 wH
f1
...

wH
fN

 (2)

with wfn being an M dimensional complex-valued vector.
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2.1. IVA with local Gaussian model (LGM)

IVA optimizes the separation matrices {Wf}Ff=1 by mini-
mizing the objective function

J ({Wf}Ff=1) =

T∑
t=1

N∑
n=1

G(ỹtn)− 2T

F∑
f=1

log |detWf | .

(3)
The factor 2 of the second term comes from the complex-
valued density transformation p(xft|Wf ) = |detWf |2p(yft)
associated with (1). G(ỹtn) of the first term is a contrast func-
tion defined for a vector ỹtn = [y1tn, . . . , yFtn]T that spans
all the frequency bins f = 1, . . . , F . Generally G is defined
as G(ỹ) = − log p(ỹ) with the probability density function
p(ỹ). Considering the connection to the proposed method,
we introduce an LGM

p(ỹtn) =

F∏
f=1

N (yftn|0, vtn) =

F∏
f=1

1

πvtn
exp

(
−|yftn|

2

vtn

)
(4)

where vtn is the variance parameter shared among all fre-
quency bins. Then, the contrast function becomes

G(ỹtn) =

F∑
f=1

(
|yftn|2

vtn
+ log vtn

)
(5)

by omitting the constant term F log π.
The objective function (3) with (5)

J ({Wf}Ff=1, {{vtn}Tt=1}Nn=1) (6)

can be minimized by alternatively updating {Wf}Ff=1 and
{{vtn}Tt=1}Nn=1.

The variance parameters are updated by

vtn ←
1

F

F∑
f=1

|yftn|2 (7)

as a solution of the partial derivative of J with respect to vtn
being zero.

The separation matrices {Wf}Ff=1 are optimized in a fre-
quency f bin-wise manner. Although a typical approach is
to use natural gradient [23], we employ more recent ideas
[8, 9, 24]. At first, we calculate a source n specific weighted
covariance matrix

Ufn =
1

T

T∑
t=1

1

vtn
xftx

H
ft (8)

using the updated variance parameters vtn. Then, we solve
N ×N simultaneous equations

wH
fkUfnwfn = δkn (9)

with δkn being the Kronecker delta for k, n = 1, . . . , N . This
problem has been formulated as hybrid exact-approximate di-
agonalization (HEAD) [24] for Uf1, . . . ,UfN . An efficient
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Fig. 1. Estimated variance parameter examples (log scale,
large values colored in yellow) for 6-second mixtures. Each
of two rows corresponds to each of two separated signals.

way [8] to solve HEAD is to calculate

wfn ← (WfUfn)−1en (10)

for each n, where en is a vector whose nth element is one and
all the others are zero, and update as

wfn ←
wfn√

wH
fnUfnwfn

(11)

to accommodate a HEAD constraint wH
fnUfnwfn = 1.

Since Wf consists of wf1, . . . ,wfN as (2), the updates (10)
and (11) should be iterated a few times to converge.

2.2. Examples of variance parameter estimations

Figure 1 shows some estimated variance parameters. IVA es-
timates time varying source activities with vtn but not fre-
quency structures. To estimate time-frequency structures, we
can employ ICA with LGM where the probability density
function p(ỹ) is expressed with frequency specific variances
vftn as

p(ỹtn) =

F∏
f=1

p(yftn) =

F∏
f=1

N (yftn|0, vftn) , (12)

N (yftn|0, vftn) =
1

πvftn
exp

(
−|yftn|

2

vftn

)
. (13)

However, permutation problems occur as shown in the second
column of Fig. 1. This is because the joint density (4) is de-
composed into the densities (12) of each frequency bin. The
third column shows the variances vftn obtained by ILRMA
which employs a low-rank model

vftn =
∑K

k=1 bfnkatnk , bfnk, atnk ≥ 0 (14)

where [b1nk, . . . , bFnk]T represents the kth basis of the nth
separation and atnk represents its activation for each time
frame t. With 6-second mixtures, the low-rank structure
(K = 5 in this case) is moderately well estimated.
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3. SIMILARITY SEARCH-BASED METHOD

For the frequency domain BSS to work properly, the variance
parameters vftn need to be constrained to solve the permu-
tation problem. At the same time, vftn should have some
flexibility to represent rich frequency structures of sources.
ILRMA is suitable for these purposes as long as the observa-
tion length is long enough (e.g., 6 seconds). The main idea
of the proposed method is to utilize a prepared clean source
database S for estimating the variance parameters vftn well
even if the observation length is short (e.g., 2 seconds).

3.1. Preparing clean source database

Let us have L clean source signals, l = 1, . . . , L, for con-
structing the database S. By applying STFT, we have co-
efficients sftl ∈ C in the time-frequency domain with t =
1, . . . , Tl being source l specific time frames. Let us define a
vector that contains the power spectra of all frequency bins

s̆ = [|s1|2, . . . , |sF |2]T . (15)

Now we have
∑L

l=1 Tl such vectors as entries in the database

S = {{s̆tl}Tl
t=1}Ll=1 . (16)

3.2. Objective function

The proposed method inherits the objective function (3), and
the contrast function G(ỹtn) is basically of the form

G(ỹtn) =

F∑
f=1

(
|yftn|2

vftn
+ log vftn

)
. (17)

Now, the variance parameters v1tn, . . . , vFtn are frequency
dependent and constrained in the following manner. Let us
define a vector summarizing the variances of all the frequency
bins

v = [v1, . . . , vF ]T . (18)

We constrain that the variance vector v is an entry γs̆ of the
database S with arbitrary scale γ adjustment.

3.3. Variance parameter update by similarity search

To meet the above constraint, we search the database S for a
scale-adjusted entry γs̆ that is most suitable for ỹtn. Let us
define a power-spectrum vector

y̆tn = [|y1tn|2, . . . , |yFtn|2]T (19)

of ỹtn. In this context, the minimization of the contrast func-
tion (17) corresponds to the minimization of the Itakura-Saito
(IS) divergence DIS(y̆tn, γs̆) defined by

DIS(y̆tn, γs̆) =

F∑
f=1

(
|yftn|2

γ|sf |2
− log

|yftn|2

γ|sf |2
− 1

)
(20)

Algorithm 1 Similarity Search-based frequency domain BSS
1: procedure SSBSS({{xft}Ff=1}Tt=1)
2: load database S prepared as (16)
3: initialize Wf with an identity matrix for all f
4: for iter = 1 to #iterations do
5: update y̆tn for all t, n by (19) and (1)
6: perform similarity search on S for y̆tn for all t, n
7: update vftn for all f, t, n by (21)
8: update Wf for all f by (8), (10), and (11)
9: end for

10: update yft for all f, t by (1)
11: end procedure

followed by updating the variance parameters

vtn ← γs̆∗ or vftn ← [γs̆∗]f , f = 1, . . . , F (21)

where ∗ is the index of a database entry that is most similar to
y̆tn in terms of the IS divergence with the scale adjustment

γ =
1

F

F∑
f=1

|yftn|2

|sf |2
. (22)

3.4. Whole algorithm

The proposed method, similarity search-based BSS (SSBSS),
is summarized in Algorithm 1. Separation matrices Wf are
updated at line 8 by solving the HEAD problem as explained
in Sect. 2.1 with vtn in (8) being replaced by vftn.

4. EXPERIMENTS

We evaluated the performance of the proposed method by ex-
periments. We measured impulse responses from two loud-
speakers (N = 2) to two microphones (M = 2) in a room
whose reverberation time was RT60 = 200 ms. Then, we
made 32 mixture cases by convolving the impulse responses
and various combinations of 2-second speech signals. The
sampling frequency was 16 kHz. The frame width and shift
of STFT were 128 ms and 32 ms, respectively. The separation
performance was evaluated in terms of Signal-to-Distortion
Ratio (SDR) [25].

Three types of clean source databases consisting of 16
speakers’ utterances were prepared. The first one was close
database that contains the sources used for making mixtures.
Using such a database is in an ideal situation where we ver-
ified the basic concept of the proposed method. The second
one was open database that did not contain the source time
frames used for making mixtures (but contained the same
speaker’s different utterances). The third one was open+c
database where k-means clustering was applied to open
database entries per each source (l = 1, . . . , L) and the re-
sultant k-means 10 centroids (10L in total) were added as
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Fig. 2. Separation performance by IVA and ILRMA (existing
methods) and four settings of SSBSS (the proposed method).
Each dotted line corresponds to a mixture case. The solid grey
line represents the average of 32 mixture cases.

new entries. In any cases, the number of database entries was
around 30,000 with F = 1025 frequency bins.

Figure 2 shows the separation performances. The exist-
ing methods, IVA and ILRMA(K) with ranks K = 1 and 5,
did not attain good SDR values on the average because the
mixtures were 2 seconds short. The proposed method SS-
BSS with close database performed very well. However, the
method with open database did not perform well. Adding
k-means centroids (open+c) improved the separation a lit-
tle bit. With these experimental results, we recognized that
the database entries should be constructed wisely for better
separation. Therefore, we added another type of experi-
ments ILRMA(1), SSBSS(open+c) where ILRMA with rank-1
model vftn = bfnatn and the proposed method with open+c
database were concatenated. More specifically, ILRMA(1)
separated the mixtures at a certain degree and generated
new database entries s̆ = [b1n, . . . , bFn]T. Then, the pro-
posed method inherited the separation with the dynamically
extended database. This combined method improved the sep-
aration performances a bit further. However, the gap to the
ideal situation SSBSS(close) was still large.

Figure 3 shows typical convergence behavior examples.
We observed that #iterations = 30 was sufficient for Algo-
rithm 1 to converge in terms of not only the objective func-
tion (3) but also the IS divergence (20) of each separation to
the most similar entry. The execution time was around 20 sec-
onds for a 2-second mixture. We implemented a linear scan
similarity search with CUDA C codes executed on a GPU
(NVIDIA Tesla V100). All the database entries of the above
mentioned size could fit on the GPU memory, and the data
load took 1900 ms. The number of queries of the similarity
search per iteration (line 7 of Algorithm 1) was N × T =
2 × 79 = 158. One batch similarity search (158 queries for
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Fig. 3. Convergence behavior examples with close database.
Left: objective function (3) with (17). Right: each dotted
line represents the IS divergence DIS(y̆t1, γs̆∗) for each time
frame t ∈ {1, . . . , T} of the first n = 1 separation. The solid
black line represents the average of T = 76 frames.
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Fig. 4. Averaged separation performance over 32 mixtures of
the proposed method by varying the database conditions.

30,000 entries with 1025 dimensionality) took around 230 ms.
Figure 4 shows how reverberant condition mismatches af-

fected the separation performance. The experimental results
explained so far were obtained using the databases where dry
sources were convolved with the impulse responses whose re-
verberation time was matched to the mixtures RT60 = 200 ms.
Here we additionally report the results with databases whose
RT60 were not 200 ms or where dry sources themselves were
used for the entries. We observed that the close cases were
largely affected by whether a room reverberant situation was
simulated or not (i.e., source). And the difference of rever-
beration time did not affect much. For the open cases, these
conditions were not so important. Rather, a better database
should be constructed for better separation.

5. CONCLUSION

The proposed method SSBSS searches a clean database S for
similar entries to current separations y̆. The search results
are directly used for updating the variance parameters vftn
of LGM-based frequency domain BSS. Experimental results
showed that SSBSS with ideal close databases performed
very well for 2-second short mixtures. Using open databases
lowered the performance considerably. Future work includes
developing a method to construct better databases in the open
cases. Accelerating the similarity search by approximation
[26, 27] is also important to handle a larger database.
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