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ABSTRACT
The future Smart Grid represents an extraordinary opportunity to
transform the ways we currently approach energy into a new era of
low-carbon, renewable, and efficient solutions which will ultimately
have a significant impact on both the environment and economy.
This effort requires close collaboration of experts from the Power,
Digital Signal Processing (DSP) and Machine Learning (ML) com-
munities, with the common language between these diverse disci-
plines an important first step in this endeavour. To promote seamless
transition of ideas, we here establish a duality between the Clarke
transform, a workhorse in Power Grid analysis, and principal com-
ponent analysis (PCA), a staple subspace method in DSP/ML. Upon
highlighting the limitations of the Clarke transform in off-nominal
unbalanced power system conditions, we illuminate a DSP-enabled
class of self-balancing solutions, referred to as the Smart Trans-
forms, based on adaptive complex widely linear modelling. Exam-
ples on system frequency estimation support the approach.

Index Terms— DSP Education, Smart Grid, Principal Compo-
nent Analysis, Clarke Transform, Widely Linear Modelling

1. INTRODUCTION

The deployment of distributed generation, mainly through small
photovoltaic systems, and the electrification of transport and heat
are causing significant changes in the distribution network [1]. There
will be more power circulating through the distribution network and
it will have less-obvious power flow directions. Consequently,
there will be more chances of reaching network constraints, such
as the maximum current and maximum voltage deviation, together
with potentially greater issues with unbalanced conditions such as
brownouts and blackouts. The conventional approach to resolve this
problem such as network reinforcement (e.g. upgrading transform-
ers) is very costly and therefore network designers need to be able
to push the operation of the network closer to the physical limits and
will require tools that are designed to analyse conditions that are less
ideal [2].

Current analysis tools such as the Clarke and related transforms
derive from the antecedent technology area of Circuit Theory, and
were designed for systems that operate in balanced conditions [3,
4, 5, 6]. Given the dynamically unbalanced nature of future power
grids, there is a need for a fresh perspective of three-phase power
signal analysis so that power systems can be analysed using modern
tools and in off-nominal conditions. This will inevitably open the
door for the deployment of more sophisticated algorithms, which
have been extensively studied in the signal processing and machine
learning communities, to be used for the most critical tasks such as
fault detection and frequency estimation.

The first step towards achieving this goal is to establish a com-
mon language between the Power and Data Analytics communities,

a subject of this work. Consequently, we set out to show the dualities
between existing methods established in both power and data driven
communities as a first step towards “Smart DSP for a Smarter Power
Grid”. More specifically, the focus of this work is to elucidate the du-
ality between the Clarke transform, a fundamental tool in power sys-
tem analysis, and principal component analysis (PCA). Further op-
portunities for wider deployment of signal processing and machine
learning are shown by highlighting the nature of three-phase sig-
nals in terms of subspaces and trajectories. Finally, through adaptive
complex widely linear modelling, we introduce a class of solutions,
referred to as the Smart Clarke and Park transforms, which tackle
the limitations of classic Clarke/Park transforms for frequency esti-
mation in unbalanced system conditions and can be seamlessly inte-
grated in graduate courses on Smart Grids or subspace based spectral
estimation.

2. BACKGROUND

Consider a sampled three-phase voltage measurement vector, sk,
which at a discrete time instant, k, is given by

sk =

va,kvb,k
vc,k

 =

 Va cos(ωk + φa)
Vb cos(ωk + φb − 2π

3
)

Vc cos(ωk + φc + 2π
3

)

 , (1)

where Va, Vb, Vc are the amplitudes of the phase voltages va,k, vb,k,
vc,k, while ω = 2πf is the fundamental angular frequency, with f
the fundamental power system frequency. The off-nominal angles
for phase voltages are denoted by φa, φb, and φc. The system is said
to be in ‘balanced’ conditions if Va = Vb = Vc and φa = φb = φc.
From the three-phase voltage, sk, and upon employing the identity
cos(x) = (ejx + e−jx)/2, we arrive at its complex–valued phasor
representation in the form

sk =
1

2

(
vejωk + v∗e−jωk

)
, (2)

where v = [V̄a, V̄b, V̄c]
T and

V̄a =
Va√

2
ejφa , V̄b =

Vb√
2
ej(φb−

2π
3

), V̄c =
Vc√

2
ej(φc+

2π
3

). (3)

2.1. Clarke and Park transform

The Clarke transform, also known as the αβ transform, aims
to change the basis of the original 3D vector space where the
three-phase signal sk resides, to yield the Clarke–transformed
v0,k, vα,k, vβ,k voltages in the formv0,kvα,k

vβ,k

 =

√
2

3


√

2
2

√
2

2

√
2

2

1 − 1
2
− 1

2

0
√
3

2
−
√

3
2


︸ ︷︷ ︸

Clarke matrix

va,kvb,k
vc,k


︸ ︷︷ ︸

sk

. (4)
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The quantities vα,k and vβ,k are referred to as theα and β sequences,
while the term v0,k is called the zero-sequence, as it is null when the
three-phase signal, sk, is balanced, to yield the reduced 2D interpre-
tation [

vα,k
vβ,k

]
=

√
2

3

1 − 1
2
− 1

2

0
√
3

2
−
√
3
2


︸ ︷︷ ︸

reduced Clarke matrix C

va,kvb,k
vc,k

 . (5)

The Park transform, also known as the dq transform, multiplies the
Clarke αβ voltages in (5) with a time-varying unit–determinant ro-
tation matrix, Pθ , to produce the Park voltages, vd,k, vq,k, i.e.[

vd,k
vq,k

]
=

[
cos(θk) sin(θk)
− sin(θk) cos(θk)

]
︸ ︷︷ ︸

Park matrix Pθ

[
vα,k
vβ,k

]
. (6)

where θk = ωk. Notice that the Clarke αβ voltage in (5) can be
conveniently expressed as a complex variable, s̄k

def
= vα,k + jvβ,k,

and can, therefore, be compactly described as

s̄k = cHsk, c
def
=

√
2

3

[
1, e−j

2π
3 , ej

2π
3
]T
. (7)

2.2. Principal Component Analysis
Principal component analysis (PCA) is a well-established tool which
performs an orthogonal transformation in order to separate meaning-
ful data from noise, or to reduce the dimensionality of the original
signal space while maintaining the most important information bear-
ing latent components in data. This is achieved by assuming that
information is captured by variance in the data. Therefore, PCA
projects the data onto a set of basis vectors (also called principal
components) where the first principal component is defined as the
direction in the original signal space with maximum variance, the
second principal component is the direction with the next largest
variance and is orthogonal to the first principal component, and so
on. The overall solution to this problem is the eigenvector matrix of
the data covariance matrix. In other words, for a general data vector,
xk ∈ RM×1, for which the covariance matrix, Rx, is defined as

Rx
def
= cov(xk) = lim

N→∞

1

N

N−1∑
k=0

xkx
T
k , (8)

the symmetric covariance matrix, Rx, admits the following eigen-
value decomposition

Rx = QΛQT (9)
where the diagonal eigenvalue matrix, Λ = diag{λ1, λ2, . . . , λM},
indicates the power of each principal component within xk, while
the matrix of eigenvectors, Qr = [q1, q2, . . . , qM ], designates the
principal directions in the data.

3. NEW PERSPECTIVE

We now provide a modern interpretation of the Clarke transform as
a principal component analyser under balanced conditions.

3.1. Clarke transform as a PCA
Without loss of generality, we consider normalised versions of the
phasors (relative to V̄a), and define δi

def
= V̄i/V̄a, i ∈ {a, b, c}, with

δa = 1, to yield v̄ =
[
1, δb, δc

]T, where

δb =
Vb
Va
ej(φb−φa−

2π
3 ), δc =

Vc
Va
ej(φc−φa−

2π
3 ). (10)

For unbalanced systems, the covariance matrix, Ru
s , reflects the ef-

fects of off–nominal amplitude/phase conditions, modelled by the
complex–valued imbalance ratios, δb and δc, and is given by

Ru
s = 1

2


1 |δb| cos(∠δb) |δc| cos(∠δc)

|δb| cos(∠δb) |δb|2 |δb||δc| cos(∠δb − ∠δc)

|δc| cos(∠δc) |δb||δc| cos(∠δb − ∠δc) |δc|2

. (11)

In balanced conditions, the covariance matrix of the normalised
three–phase balanced power signal, sk, reduces to

Rs =
1

2

 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1

 . (12)

After performing the eigen-decomposition on the above covariance
matrix, i.e. Rs = QΛQT, this yields

QT =

√
2
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−
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2

 , Λ =
1

4

0 0 0
0 1.5 0
0 0 1.5

 . (13)

Remark 1: The matrix of eigenvectors, QT, is identical to the
Clarke transformation matrix in (4). Therefore, all the variance
in balanced three-phase power system voltages can be explained
through the two eigenvectors associated with the non-zero eigenval-
ues (principal directions) of the Clarke–transform–matrix. This of-
fers a modern Data Analytics interpretation of the Clarke transform
as a Principal Component Analyser which projects a three–phase
voltage signal in R3 onto a 2D subspace spanned by the two largest
eigenvectors of the data covariance matrix.

4. OPPORTUNITIES

The relationship between the Clarke transform and PCA in Remark
1 only exists in balanced conditions. This is because, as the nature of
the data changes with the type and prominence of imbalances, PCA
adapts to the data, whereas the Clarke transform remains ‘static’ and
‘data agnostic’. Next, we show that PCA is the correct subspace
transform even under unbalanced system conditions, which opens
up new opportunities for the analysis of three-phase power systems.
This will inevitably have an impact on the way we teach data analyt-
ics and signal processing to students in the power community [7, 8].

4.1. Location of subspace
Consider the eigen-decomposition of a symmetrically conjugate un-
balanced (δb = δ∗c ) covariance matrix, Ru

s = QΛQT, to yield

QT =

√
2

3



√
2

2

−
√

2

4p

−
√

2

4p

1 p p

0

√
3

2

−
√

3

2

 , (14)

Λ =
1

2

0 0 0
0 2(|δb|2 − p2) 0
0 0 1 + 2p2

 . (15)

where p = |δb| cos(∠δb). This is realistic as typical voltage sags ex-
hibit symmetrically conjugate imbalances [9]. Notice that for the
balanced case, characterised by p = − 1

2
, the above expressions

reduce to the equation in (13). Furthermore, observe that the data
always lies on a 2D subspace, owing to a zero eigenvalue in (15).
Equation (14) allows us to understand how the location of the 2D
subspace where the data resides changes as a function of the imbal-
ance. For example, Fig 1 (A) and (B) show the effect of off-nominal
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Fig. 1. Visualisation of characteristics of three-phase voltage signals, sk, in a 3D space. (A) The effect of conjugate off-nominal phase angles
on the data subspace where sk resides in. (B) The effect of conjugate voltage sags on the data subspace where sk resides in. (C) The effect
of general system imbalances on the trajectory of sk in 3D space.

phase angles and voltage sags for a symmetric conjugate type of im-
balance.

4.2. Trajectory of data
We shall now examine the problem from a Data Analytics perspec-
tive. Fig 1 (C) shows that with an imbalance, the trajectory of the
data (blue dots) changes from circular to elliptical (red dots). This
can be confirmed by noticing that for unbalanced data, the non-zero
eigenvalues of the covariance matrix are no longer equal. In other
words, the variation along the two principal axes are different.

The above phenomenon can be mathematically described us-
ing complex algebra. Upon combining the complex Clarke trans-
form in (7) with the phasor representation of the data in (2), we ar-
rive at a physically meaningful representation through the counter–
clockwise rotating positive–sequence voltage, V̄+, and the clockwise
rotating negative–sequence voltage, V̄−, both rotating at the system
frequency, ω, to assume the form

s̄k =
1√
2

(
V̄+e

jωk + V̄ ∗−e
−jωk

)
, (16)

where

V̄+ =
1√
3

[
Vae

jφa + Vbe
jφb + Vce

jφc

]
(17)

V̄ ∗− =
1√
3

[
Vae
−jφa + Vbe

−j
(
φb+

2π
3

)
+ Vce

−j
(
φc−

2π
3

)]
.

Remark 2: For balanced three–phase power systems, with Va =
Vb = Vc and φa = φb = φc, the negative sequence voltage compo-
nent within the Clarke voltage, V̄ ∗− in (16), vanishes and the Clarke
voltage attains a single degree of freedom. For unbalanced systems,
characterised by unequal phase voltage amplitudes and/or phases,
V̄ ∗− 6= 0, and thus the Clarke voltage in (16) exhibits two degrees of
freedom - a signature of system imbalance.

5. SMART DSP FOR A SMARTER POWER GRID

We have so far established that two key characteristics of the data in
off-nominal conditions are: (i) the location of the 2D subspace where
the data resides changes (ii) the trajectory of the data changes from
circular to elliptical. This motivates the use of an adaptive algorithm
with sufficient degrees of freedom and naturally points towards using
adaptive complex widely linear modelling.

5.1. Widely Linear Modelling
Recall that the widely linear estimator for complex-valued data is
given by

ŷk = E{yk|xk,x∗k} = hHxk + gHx∗k . (18)

A comparison with the expression for the unbalanced Clarke voltage
in (16), reveals that it is governed by a widely linear autoregressive
(WLAR) model, in the form [10]

s̄k =
1√
2

(
ejωV̄+e

jω(k−1) + e−jωV̄ ∗−e
−jω(k−1)

)
(19)

= h∗s̄k−1 + g∗s̄∗k−1, (20)
from which the system frequency, ω, can be estimated as

ω̂ = tan−1


√

Im {h}2 − |g|2

Re {h}

 . (21)

For a general case of both unbalanced system voltages and time-
varying frequencies, the coefficients h and g will also assume a time-
varying form, hk and gk, and can be estimated using the augmented
complex least square (ACLMS) algorithm [11, 10], to yield an in-
stantaneous frequency estimate

ω̂k = tan−1


√

Im {hk}2 − |gk|2

Re {hk}

 . (22)

5.2. Smart Clarke and Park transforms
Having demonstrated that accurate estimation in unbalanced systems
requires an additional degree of freedom, achieved through widely
linear modelling, it is natural to ask whether we can use Signal Pro-
cessing to “equalise” the noncircular Clarke trajectories associated
with unbalanced systems, so as to make them amenable to standard
(strictly linear) single–degree–of–freedom system analysis tools. To
this end, consider the voltage unbalance factor (VUF) in a power
system, defined as κ def

= V̄−/V̄+ [12]. The system frequency and
VUF can now be expressed through the WLAR coefficients, h and
g, as

ejω = h∗ + g∗κ and e−jω = h∗ +
g∗

κ∗
. (23)
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(A) (B)

(C) (D)

Fig. 2. Illustrative examples of the Smart Clarke transform (SCT) and Smart Park transform (SPT). (A) An example of a three-phase time
waveform which evolves from a balanced state into type B and C faults. (B) Frequency estimation using the Smart Park transform. Observe the
self-stabilising effect when faults occur. (C) The elliptical trajectory of the Clarke voltage in unbalanced conditions. (D) The self-balancing
nature of the Smart Clarke transform.

Upon solving for the system frequency, ω, and VUF, κ, we have
[10]

ejω = Re {h}+ j

√
Im2{h} − |g|2, (24)

κ =
V̄−

V̄+
=

j

g∗

(
Im {h}+

√
Im2{h} − |g|2

)
. (25)

The knowledge of the VUF, κ in (25), allows us to eliminate the
negative sequence phasor, V̄−, from the Clarke voltage, s̄k in (16).
To this end, consider the expression

mk
def
=
√

2 (s̄k − κ∗s̄∗k) = V̄+

(
1− |κ|2

)
ejωk, (26)

whereby the value of κ is readily available from the WLAR coeffi-
cients in (25). This makes it possible to eliminate the “noncircular”
effects of voltage imbalance on the Clarke αβ voltage, based on

m̄k = mk/(1− |κ|2) = V̄+e
jωk. (27)

Finally, from (24) and (25), the self–balancing adaptive Smart Clarke
transform (SCT) and Smart Park transform (SPT) [13] can be sum-
marised as

SCT : vsc,k =
√

2(s̄k − κ∗ks̄∗k)/(1− |κk|2) (28a)

SPT : vsp,k = e−jωkkvsc,k. (28b)
For real–time adaptive mode of operation, the SCT and SPT can be
implemented using adaptive learning algorithms (e.g. ACLMS or
Kalman filter) to track the VUF, κk, and system frequency, ωk.

6. SIMULATIONS

In order to illustrate the power behind the derived Smart transforms,
consider a three-phase time waveform that evolves from a balanced
state into a type B fault, followed by a type C fault, as shown in

Fig 2 (A). Real-time frequency estimation can be achieved using the
SPT based on the augmented complex least mean square (ACLMS)
as illustrated in Fig 2 (B) [11]. Observe the self-stabilising effect of
the SPT at the time where faults occur. Fig 2 (C) shows the elliptical
trajectory of the standard Clarke voltage for the type B and type C
faults (a signature of imbalance), as opposed to the circular trajectory
for a balanced Clarke voltage. The self-balancing nature of the SCT
is self-evident, as it equalises the elliptical trajectories of the type B
and type C faults into the “balanced” circular ones, Fig 2 (D).

7. CONCLUSION

The future Smart Grid will be permanently dynamically unbalanced
and, therefore, its successful operation requires close cooperation
between the Power Systems and Data Analytics communities, es-
pecially those working in Signal Processing and Machine Learning.
However, a lack of common language has been identified as a ma-
jor prohibitive factor in this endeavour. Also, the fact that the fun-
damental power system analysis tools, e.g. Clarke and Park trans-
forms, have been designed from a Circuit Theory perspective makes
it awkward for linking up with Data Analytics communities. To help
bridge this gap, we have provided a modern interpretation of the
three-phase voltage transforms through principal component analy-
sis, and in this way have established a cross-community link. In ad-
dition, the flexibility and rigour of our DSP interpretation has made
it possible to simultaneously develop advanced solutions for unbal-
anced power systems, such as the Smart transforms for frequency
estimation, which are not accessible using the power community ap-
proaches. For the electronic supplement consisting of teaching ma-
terial and code, please see http://www.commsp.ee.ic.ac.
uk/˜mandic/DSP_ML_for_Power.htm.
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