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Abstract—To make the system available at low-cost, millimeter-
wave (mmWave) multiple-input multiple-output (MIMO) archi-
tectures employ analog arrays, which are driven by a limited
number of radio frequency (RF) chains. One primary challenge
of using large hybrid analog-digital arrays is that the digital
baseband cannot directly access the signal to/from each antenna.
To address this limitation, recent research has focused on re-
transmissions, iterative precoding, and subspace decomposition
methods. Unlike these approaches that exploited the channel’s
low-rank, in this work we exploit the sparsity of the received
signal at both the transmit/receive antennas. While the signal
itself is de facto dense, it is well-known that most signals are
sparse under an appropriate choice of basis. By delving into the
structured compressive sensing (CS) framework and adapting
them to variants of the mmWave hybrid architectures, we provide
methodologies to recover the analog signal at each antenna from
the (low-dimensional) digital signal. Moreover, we characterizes
the minimal numbers of measurement and RF chains to provide
this recovery, with high probability. We discuss their applications
to common variants of the hybrid architecture. By leveraging the
inherent sparsity of the received signal, our analysis reveals that
a hybrid MIMO system can be “turned into” a fully digital one:
the number of needed RF chains increases logarithmically with
the number of antennas.

I. INTRODUCTION

With the growing demand for extreme broadband, the oper-
ating frequency of 5G radio is steadily shifting upward to the
mmWave band. Despite its widespread use in mmWave com-
munications [1], [2], [3], the hybrid analog-digital architecture
suffers from the fact that one does not have access to the signal
at the transmit/receiver antennas. This fundamental problem
has several implications: a) Unlike conventional (fully digital)
MIMO systems, the receive signal at the antennas cannot be
directly manipulated. b) The received signal can be digitally
processed only after the application of the analog combiner.
Thus, the channel output can be observed only through a low-
dimensional projection, since the number of radio frequency
(RF) chains, r, is drastically smaller than the number of receive
antennas, N .

To circumvent this limitation previous approaches had re-
course to schemes such as, i) repetition [4], i.e., transmitting
the same signal several times and combining it each time
with a different filter at the receiver (see Fig 1). Evidently,
this procedure is wasteful of the channel resources due to
the large communication overhead that scales as O(N/r). ii)
Hybrid precoding algorithms that approximate the fully digital
projection by a cascade of analog and digital filters. These

algorithms are inherently iterative, with high computational
complexity that scales with O(r3), and lack convergence
guarantees [5]. iii) Low-rank subspace decomposition that
leverages the restricted isometry property of the channel
sounding signals [6]. These approaches thus result in large
communication overhead. Providing low overhead is critical
to mmWave MIMO systems suffering from the sheer scarcity
of channel coherence resources. It is now well understood that
a received signal - at the output mmWave MIMO channel - is
dense in its spatial domain, but becomes sparse in a properly
transformed space [7]. Promising directions have recently been
proposed in the context of structured compressive sensing
(CS) [8].

In this work, we pay heed to the framework of structured CS
[9], [8]. Unlike the previous works [4], [6], which rely on the
sparsity of the channel’s eigenmodes, in this work we exploit
the sparsity of the signal at the transmit/receive antennas. Our
insight is to leverage the inherent sparsity of the signal in
the transformed space, to recover the received signal with a
minimal number of measurements. We theoretically investigate
and compare the minimal number of measurements for three
known recovery methods. We discuss their application to
variants of the hybrid architecture, namely, the fully connected
architecture, and the electromagnetic lens architecture. Finally,
we argue how the proposed method can be used to tradeoff
computational complexity and communication overhead. Our
numerical results show the proposed approach can recover
the N -dimensional signal at the MS antennas, with ≈ N/8
measurements.

Notation: In the following, we use bold upper-case letters
to denote matrices, and bold lower-case letters denote vectors.
For a given matrix AAA, [AAA]i,j denotes the element (i, j) in AAA,
tr(AAA) denotes its trace, ‖AAA‖2F its Frobenius norm, and AAA† its
conjugate transpose. [AAA]R denotes the submatrix formed by
taking rows indexed by R. We let {n} , {1, ..., n}, and III
denotes identity matrix. For set X , |X | denotes its cardinality.

II. SYSTEM MODEL

Assume a single user MIMO system with M and N
antennas at the base station (BS) and mobile station (MS),
respectively, where each is equipped with r RF chains, and
sends d independent data streams. We assume that d ≤ r ≤
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Fig. 1. Repetition-aided (RAID) echoing for the hybrid analog-digital
architecture
min(M,N) and r � N . The downlink (DL) received signal
is given by,

x̃xx = WWW †yyyR = WWW †HHHFFFxxxT +WWW †nnnR (1)
where HHH ∈ CN×M is the complex channel, assumed to be
slowly block-fading, FFF ∈ CM×r is the analog precoder, WWW ∈
CN×r the analog combiner, yyyR the N -dimensional signal at
the MS antennas, xxxT is the transmit signal, and nnnR is the
zero-mean AWGN noise at the MS, with E[‖nnnR‖22] = σ2

R.
Note that T and R subscripts denote quantities at the BS and
MS, respectively. Both the analog precoder and combiner are
constrained to have constant modulus elements which model
phase shifters. The above assumptions are widespread in the
mmWave MIMO literature [10]. We ignore the digital precoder
and combiner without affecting our results.

A. Motivation

Unlike conventional (fully digital) MIMO systems, the
transmit/receive signal at the antennas cannot be directly
manipulated. Our earlier approach for mitigating this fun issue
was to use simple repetitions/retransmissions [4]: Retransmit
the same precoded signal KR times at the BS, and each time
combine with columns of a DFT matrix at the MS (refer to
Fig. 1). This essentially turns a hybrid analog-digital MIMO
link into a conventional one. However, this comes at the cost
of N/r (resp. M/r) retransmissions in the downlink (resp.
uplink). The added (but potentially unnecessary) communi-
cation overhead is due to the restriction that we observe
the N -dimensional channel output only via an r-dimensional
observation (where r � N ).

In this work, we aim to use the framework of Compressive
Sensing (CS), to significantly reduce this repetition overhead.
More specifically, we wish to recover the signal at the MS
antennas, yyyA, from the limited number of measurements pro-
vided by the digital output yyyD. We will exploit a well-known
property, namely, that the signal at the antennas is sparse
in some basis ΨΨΨ: Although this observation has been estab-
lished [7] the problem considered here has not been addressed.
We thus investigate several recovery methods and analytically
compare the minimum number of retransmission that each
requires, their recovery guarantees, and their computational
complexity. In contrast to the asymptotic guarantees offered
by CS, we look at exact dependence between the minimum
number of measurements and the recovery probability.

B. Measurement Model

In this part, we are concerned with recovering the desired
signal, HHHFFFxxxT , despite the reduced number of measurements

(i.e. limited number of RF chains), and the limitation of
additive noise. Consider the following series of repetitions,
where the BS sends the same (precoded) signal HHHFFFxxxT , KR

times, and the received signal is combined with a different
analog combiner WWW (l), l ∈ {KR},

yyy
(l)
D = WWW (l)†(HHHFFFxxxT +nnn

(l)
R ) = WWW (l)†(yyyS +nnn

(l)
R ), (2)

where yyyS is the desired part of the received signal at the
MS antennas. The intuition behind this measurement model is
that r observations are obtained through the analog combiner
(since all of the r RF chains are activated), during each of
the KR transmissions. We then combine these transmission
to estimate the desired signal yyyS , from the limited number
of measurements. Our proposal is to exploit recent tools in
structured compressive sensing (CS) to drastically reduce the
above communication overhead. Though initially conceived
for sampling band-limited signals [9], the ideas have been
successfully applied to MRI compression/reconstruction, im-
age processing, optics, ADC design, etc. [8]. A common take
home message from the plethora of applications, is that most
signals are sparse, under the right basis.

While yyyS is dense, it is sparse in some basis ΨΨΨ. This implies
that there exists a basis ΨΨΨ ∈ CN×N , such that yyyS = ΨΨΨsss, where
‖sss‖0 ≤ LR and LR is the sparsity level. For instance, most
time-domain signals which pass through a mmWave MIMO
link have are sparse in the frequency domain (i.e., when ΨΨΨ is a
DFT matrix) [7]. It is known that frequency domain transforms
(e.g., DFT, DCT), compact the signal energy in a small set of
frequencies, thereby resulting in a sparse signal; see examples
in [8]. We validate this insight in Section V. Letting Q , rKR

be the total number of measurements, we rewrite (2) as
zzz = ΦΦΦΨΨΨsss+ ñnn, (3)

where zzz , [yyy
(1)T

D , · · · , yyy(KR)T

D ]T denotes the aggregate Q× 1

measurement vector, ñnn = [ñnn
(1)T

R , · · · , ñnn(KR)T

R ]T the effective
Q × 1 noise vector, ΦΦΦ = [(WWW (1)†)T , · · · , (WWW (KR)†)T ]T the
Q×N is the sensing matrix. Thus, the sparse signal can be
recovered using the Basis Pursuit with Inequality Constraints:
(BPIC) : sss BPIC = argmin

sss
‖ΨΨΨsss‖1 s. t. ‖zzz −ΦΦΦΨΨΨsss‖2 ≤ ε.

Note that, the number of measurements, Q, increases with r
and KR. While the number of RF chains, r, corresponds to
the implementation complexity, the number of transmissions,
KR, denotes the signaling complexity: Evidently, lower values
are preferred, i.e., Q = rKR � N .

III. PROPOSED METHOD FOR RECOVERY

We first employ known recovery methods in the CS litera-
ture, namely, recovery from Random Frequency Measurements
(RFM), recovery using Subsampled Incoherent Bases (SIB),
and recovery from Bernoulli Random Matrix (RM). They are
also adapted to a regime compatible with mmWave assump-
tions, where N,M can be arbitrarily large but r,KR, L are
small; see Section IV for a discussion of their application to
the fully connected and the electromagnetic lens architecture.

A. Recovery from Random Frequency Measurements
This method is based on the seminal work of Candes [11] -

adapted to the problem in question - to obtain non-uniform re-
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covery guarantees, which provide recovery probability for the
sparse signal sss. Let R be a set of indexes selected uniformly at
random from {N}, where R ⊆ {N}, and |R| = Q. Consider
the following method where each measurement is a row picked
at random from a N × N DFT matrix, DDDN . Formally, the
quantities in (3) are defined as: ΦΦΦ , Q−1/2[DDD†N ]R, and
ñnn , ΦΦΦnnn. It is simple to verify that ñnn is zero-mean AWGN, with
σ̃2 = E[‖ñnn‖22] = Nσ2

R/Q, and E[ñnnñnn(r)
†
] = (Nσ2

R/Q)IIIQ.
Thus, sss is recovered by solving the known LASSO [11],
sssLASSO = argmin

sss
‖ΦΦΦΨΨΨsss− zzz‖22 + λσ̃(r)‖ΨΨΨsss‖1.

The recovery probability, γ, is thus related to Q as follows.

Proposition 1 (Random Frequency Measurements (RFM)).
Given an arbitrary fixed sparse signal sss, pick the number of
measurements Q as,

Q ≥ c(1 + β)LR log(N) (4)
Then with probability at least

γ , 1− 6(N−1 + e−β) (5)
the solution of the LASSO with λ = 10

√
logN , is such that

‖sss? − sssLASSO‖22 ≤ polylog(N)LR

N σ̃2 where c is a positive
numerical constant.

Refer to [11][Theorem 1.2].
Given Proposition 1, we substitute β in (4) with its expression.
After simple manipulations we write (5) as,
β = − log(N(1− γ)− 6) + log(6N) ≥ log(6N) ≥ log(N)
We then plug the above lowerbound on β to derive another
lowerbound on Q in (4),
Q ≥ c(1 + log(N))LR log(N) ≈ cLR log2(N) , TRFM (6)

B. Recovery from Subsampled Incoherent Bases
Another design paradigm in CS is to jointly design ΦΦΦ and

ΨΨΨ to be maximally incoherent, by minimizing their mutual
coherence µ(ΦΦΦ,ΨΨΨ) [12]. Note that, the minimum value of
µ(ΦΦΦ,ΨΨΨ) is achieved when ΨΨΨ is an orthonormal DFT basis,
and ΦΦΦ is the standard basis [8].

Proposition 2 (Subsampled Incoherent Bases). Let R be a
uniformly randomly selected subset of {N}, where R ⊆ {N}
and |R| = Q. We subsample ΦΦΦ as follows: ΦΦΦ , [IIIN ]R. Given
constants γ and δ, with 0 ≤ γ, δ ≤ 1 and let Q be such that,
Q ≥ Cδ−2LR max

(
log3(LR) log(N), log(γ−1)

)
, TSIB

where C is independent of all other constants. Thus, the
sparse signal can be recovered from the BPIC solution, with
probability greater than γ.

Refer to [8] for proof.
Note that for a high recovery probability (γ → 1), the
minimum number of measurements becomes,

TSIB ≈ Cδ−2LR log3(LR) log(N) (7)
Note that, algorithmically, SIB and RFM are equivalent
(implemented using randomly selected DFT measurements).
However, the result in differing minimum number of mea-
surements, which is the main interest of this work.

C. Recovery from Random Matrices (RM)
We use another recovery strategy based on random matri-

ces. While the previous method ensures that ΦΦΦ and ΨΨΨ are

incoherent, random constructions of ΨΨΨ result in low values of
µ(ΦΦΦ,ΨΨΨ). For instance, when the entries in ΦΦΦ are independent
identically distributed Rademacher, then ΦΦΦ is incoherent with
any basis ΨΨΨ, with high probability. These constructions are
desirable as they imply that the sparsity basis need not be
known.

Proposition 3 (Rademacher Matrices (RM) [13]). Let
ΦΦΦ in (3) denote a normalized Rademacher matrices, i.e.,
P
[
[ΦΦΦ]k,j = +1√

Q

]
= P

[
[ΦΦΦ]k,j = −1√

Q

]
= 1

2 . Moreover, the
number of measurements Q satisfies,

Q ≥ Cβδ−2
(
LR log(N/LR) + log(γ−1)

)
, TRM

Thus, with probability greater than γ, the BPIC solution is
such that ‖sss? − sssBPIC‖2 ≤ a1/

√
Q‖sss? − sssL‖1 + a2, where

sssL is the best L-sparse approximation for sss?.

Refer to [13] for proof
For γ → 1 (recovery w.h.p.), the minimum number of
measurements for this method is approximated as,

TRM ≈ Cβδ−2LR log(N/LR) (8)
It becomes clear at this stage that recovery with Radamacher
matrices requires the minimum number of samples, among all
others. Although this particular method is more complex, it can
be implemented with analog hardware by randomly setting the
phase of each element in WWW to {+π,−π}, and normalizing
the output of the combiner by 1/

√
Q.

D. Summary of Approach

We summarize the main steps of our approach. In the DL,
the transmitter retransmits the (precoded) signal KR times,
which is combined with a different analog filter (by activating
all r RF chains each transmission). The receiver constructs the
components of the measurement model in (3), and employs
any of the above methods to recover signal at its antennas,
yyyA. Focusing on the ‘’best recovery” method, RM, hereafter,
the minimum number of measurements is given by,

TRM , rKR = CRLR log(N/LR) (9)
The same CS based recovery method can be applied to an
uplink communication leading to the minimum number of
measurements at the transmitter, URM,

URM , rKT = CTLT log(M/LT ) (10)
where KT and LT are the number of retransmissions and
sparsity level of the signal, in the uplink, respectively.

IV. APPLICATION TO MMWAVE ARRAY ARCHITECTURE

A. MmWave Array Architectures

We discuss the practical issues for implementing these
recovery methods, for widely used variants of the architecture.

Implementation in the Fully Connected Hybrid Ar-
chitecture: RFM is particularly well suited for a direct
implementation to the fully connected hybrid architecture,
where every RF chain is connected to all antennas. After
generating the random sequence R, the receiver successively
selects columns of analog combiner from columns of a
DFT matrix indexed by R (r columns at a time): WWW (l) =
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1/
√
Q
[
ddd(l−1)r+1, · · · , dddlr

]
, ∀l ∈ {1, · · · ,KR}. Evidently,

the constant modulus constraint on WWW is satisfied.
Implementation in the EM Lens Array Architecture:

At the receiver, the EM lens is modeled as a cascade of a
codebook (N ×N DFT matrix), DDDR, followed by a selecion
matrix, SSSR, [14]. Note that SIB is directly applicable to
this architecture: The codebook acts as a sparsifying basis,
i.e., DDDR = ΨΨΨ. Moreover, the selection matrix, SSSR, consists
of randomly selected columns from an identity matrix, IIIN
(chosen successively from random sequence, R, r at a time).
Formally speaking, yyyD = SSS†RDDD

†
RyyyA.

Other implementation issues: We note that all recovery
methods involved a randomization step. This is easily im-
plemented with pseudo-random number generators, which are
widely used in CDMA.

B. Overhead Reduction for Subspace Estimation

In our earlier work [4], we proposed a Subspace Estimation
and Decomposition (SED) algorithm, a used retransmission
scheme (similar to that of Fig. 1) that allowed its operation in a
hybrid MIMO architecture. Moreover, quantified the resulting
communication (signaling) overhead: ΩSED ∝ (M + N)/r.
However, when employing the proposed CS-based recovery in
conjunction with SED, the communication overhead reduces
to ΩCS+SED ∝ ( LT log(M/LT ) + LR log(N/LR) ). Thus
the overhead ratio η is given by
η = ( LT log(M/LT ) + LR log(N/LR) )r/(M + N).

Moreover, as N,M grow large
η → (LT logM + LR logN )r/(M +N)→ 0.

This implies that the overhead ratio resulting from using CS
(in conjunction with SED), asymptotically decays to zero,
as N,M → ∞. Here we assume that the sparsity levels
of signals, LR, LT , are fixed as N,M tend to large. This
assumption is reasonable since LT , LR depend on the channel
(number of paths, frequency, etc), irrespective of N,M . These
results are thus relevant of mmWave MIMO.

C. Implications of Proposed Approach

Flexible Resource Allocation: The approach provides us
flexibility to trade-off communication overhead with complex-
ity (more RF chains). We exemplify with the two extremes:
One-shot recovery. A special case where the number of RF
chains is large enough such that one transmission is needed
(no repetitions, KR = KT = 1). This may correspond to a
cellular uplink communication, where the increased number
of RF chains can be handled at the BS. Then the conditions
in (10), (9) imply that the minimum number of RF chains at
the BS and MS are CTLT log(M/LT ) and CRLR log(N/LR),
receptively. Interestingly, this also implies that a hybrid MIMO
link with O(log(N)) (resp. O(log(M))) RF chains at the
receiver (resp transmitter) is equivalent to a fully one, as
N,M →∞.
Single RF chain Recovery. When complexity has to remain at
a minimal level (single RF chain receiver) can be tradedoff for
communication overhead. Setting r = 1 and rewriting (10)
and (9), we derive a lowerbound on the communication
overhead (number of retransmissions ), needed for successful
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recovery of the analog signal as: KR = CRLR log(N/LR) ,
KT = CLT logM .

Turning a hybrid MIMO into fully-digital MIMO :
The proposed approach may be used to bypass the lack
of access to analog signal at the BS/MS antennas. Such a
limitation is the reason that that many classical DSP techniques
in MIMO (e.g., pilot-based channel estimation, fully digital
precoding/combining), are not applicable to mmWave MIMO.
The retransmission scheme in [4] (see Fig. 1) allowed us
to recover the full (high-dimensional) signal at the receiver,
with a overhead cost of N/r channel uses. With proposed
method, the number of channel uses from retransmissions for
DL communication become KR = CLR log(N/LR)/r. Thus
the ‘cost’ of turning a hybrid MIMO link into a fully digital
one is drastically reduced by using the proposed approach
especially as N � 1 (which is the case in mmWave systems).

V. NUMERICAL RESULTS

We numerically evaluate our approach for a hybrid MIMO
system, with M = N = 128, beamforming along the right
singular vector, and no retransmissions (Q = r). We fix the
signal at the MS and average over random realizations of
ΦΦΦ, for each value of Q. Fig 2 shows the magnitude of the
entries in MS signal, sss, after applying ΨΨΨ: it clearly validates
our intuition as ΨΨΨsss has a sparsity level of LR ≤ 10. We
compare the Normalized MSE (NMSE) for the RFM and RM
methods for various SNR values. We observe in Fig 3 that
both methods can successfully recover sss(with NMSE ≤ .07)
from a relatively low number of measurements, Q ≤ 16,
in medium/high SNR setting. RM is able to recover the
128-dimensional signal extremely accurately, with as little as
16 measurements, across a range of worsening SNRs. This
implies that a hybrid MIMO system using RM with Q = 16
measurements (RF chains) can almost perfectly mimic its fully
digital 128× 128 MIMO.
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