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ABSTRACT

There has been a growing interest in the use of data-driven
regularizers to solve inverse problems associated with compu-
tational imaging systems. The convolutional sparse represen-
tation model has recently gained attention, driven by the de-
velopment of fast algorithms for solving the dictionary learn-
ing and sparse coding problems for sufficiently large images
and data sets. Nevertheless, this model has seen very limited
application to tomographic reconstruction problems. In this
paper, we present a model-based tomographic reconstruction
algorithm using a learnt convolutional dictionary as a regu-
larizer. The key contribution is the use of a data-dependent
weighting scheme for the l1 regularization to construct an
effective denoising method that is integrated into the inver-
sion using the Plug-and-Play reconstruction framework. Us-
ing simulated data sets we demonstrate that our approach can
improve performance over traditional regularizers based on a
Markov random field model and a patch-based sparse repre-
sentation model for sparse and limited-view tomographic data
sets.

1. INTRODUCTION

Model-based reconstruction algorithms have enabled dra-
matic improvements in the performance of tomographic re-
constructions compared to traditional approaches, especially
for sparse, limited-view and noisy data sets [1]. These meth-
ods solve the tomographic reconstruction by minimizing a
cost function that balances a data-fidelity term and a regu-
larization term that promotes certain desirable properties of
the reconstruction itself. While model-based methods have
helped to improve the performance of tomographic imaging
systems, the potential to further improve the quality by using
different regularizers is still being explored.

Several regularizers have been proposed to improve the
quality of model-based tomographic reconstructions. These
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include the edge-preserving total-variation model [2], the
non-local self-similarity model [3], and those that constrain
the solution to a sparse combination of elements from an
over-complete dictionary based on wavelets or other trans-
forms. Data-driven regularizers that learn a model from an
off-line database have also been applied to tomographic in-
version [4–6]. Among data-driven regularizers, patch based
dictionary models [4, 6, 7] have been widely developed for
tomography, with promising performance. However, the
patch is a local model and can result in redundant dictio-
nary elements that are merely translated versions of each
other. As a result there has been a revival of interest in
the use of shift-invariant [8] models for images, also called
convolutional sparse representation (CSR) models [9, 10].
Recent work on efficient algorithms for convolutional sparse
coding (CSC) [11, 12] and the corresponding convolutional
dictionary learning (CDL) problem [13–17] have allowed
for the use of CSR as regularizers for a variety of inverse
problems [18–21].

Existing approaches to exploiting the CSR model for
tomography and related problems [22, 23] have integrated
the inversion into a CDL problem, simultaneously learning
the dictionary and the reconstruction as part of the opti-
mization algorithm. This has the advantage of not requiring
any ground-truth reconstructions for use as training data for
learning a dictionary, but the integration into the dictionary
learning process imposes some practical constraints on how
the convolutional representation is exploited, and it is reason-
able to expect that highly under-determined problems may
benefit from a pre-trained dictionary if suitable training data
are available. In this paper, we propose a tomographic inver-
sion algorithm based on the CSR model, using a dictionary
learnt from an external database [24]. Instead of directly
integrating the inversion into a CSC problem, which would
retain some of the difficulties that have to be addressed in
the CDL-based approach discussed above, we use the Plug-
and-Play (PnP) framework [25,26] to couple the tomographic
inversion with a CSC model that plays the role of a Gaussian
white-noise denoiser.

2. CSR FOR IMAGE DENOISING

One of the simplest computational imaging problem is that
of recovering an image corrupted by additive white Gaussian
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noise. As a result, this simple inverse problem serves as a
convenient test-bed for the development of new regularizers
before extending them to other inverse problems. This exten-
sion is greatly simplified by the PnP method, which provides
a simple method to integrate complex models expressed via
denoising algorithms into the model-based inversion frame-
work [25, 26]. Here we summarize different approaches to
using CSR for solving the white-noise denoising problem.

A convolutional dictionary, d̃, is typically learnt from a
set of K images by minimizing

c(d, α) =
1

2

K∑
k=1

∥∥∥yk,h − M∑
m=1

dm ∗ αk,m
∥∥∥2
2
+

λ

K∑
k=1

M∑
m=1

‖αk,m‖1

such that ‖dm‖2 = 1 ∀m ∈ {1, ...M}, where yk,h is the high-
pass component of the kth image, dm is the mth dictionary
element, αk,m is the coefficient map corresponding to image
k and dictionary element m, λ is a regularization parameter
that controls the sparsity of the coefficient maps, and ∗ is the
convolution operator. The dictionaries are learned from high-
pass filtered training images rather than the original training
images due to the difficulty in representing the low-pass com-
ponents via convolutional sparse representations [27, Sec. 3].
The high-pass component is typically set as yk,h = yk −
(I + λLPFG

tG)−1yk, where G is a 2-D finite difference op-
erator and λLPF controls the strength of the filter [28]. There
are several algorithms for efficiently solving the CDL prob-
lem [13–17].

We consider three different variants of the CSC problem
for white-noise denoising. The first approach, henceforth re-
ferred to as CSC-I, corresponds to the standard CSC problem,
based on minimizing the function

c1(α) =
1

2

∥∥∥yn,h − M∑
m=1

d̃m ∗ αm
∥∥∥2
2
+ λ

M∑
m=1

‖αm‖1 (1)

where yn,h is the high-pass component of the noisy data yn,
computed in the same way as for dictionary learning. The

final reconstruction is obtained as
M∑
m=1

d̃m ∗ α̃m + yn,l where

yn,l = yn−yn,h is the low-pass component of the noisy input
image.

Since the standard CSC problem does not provide com-
petitive performance in Gaussian white-noise denoising prob-
lems, we introduce a simple `1 weighting scheme that has
been found to significantly improve performance in this ap-
plication, making it competitive with more well-established
patch-based sparse representation methods [29]. This vari-
ant, henceforth referred to as CSC-II, can be expressed as the
minimization of

c2(α) =
1

2

∥∥∥yn,h − M∑
m=1

d̃m ∗ αm
∥∥∥2
2
+ λ

M∑
m=1

‖wm � αm‖1 (2)

where � represents point-wise multiplication, and wm are
weights that are set as

wm = 1/(D̃T
myn,h)

2 , (3)

where D̃ is the matrix version of the convolutional dictionary
and 1/ denotes point-wise division [29].

While the need for pre-processing of the input images is
not problematic when solving a simple denoising problem, it
greatly complicates direct integration of the CSC model with
a more complex inverse problem since the input images and
reconstructions are in different spaces. The final variant we
consider avoids the need for high-pass filtering pre-processing
of the input images by jointly estimating low-pass and high-
pass components, using an additional regularization term that
penalises the gradient of the low-pass component [27]. This
problem , henceforth referred to as CSC-III, can be expressed
as the minimization of

c3(α) =
1

2

∥∥∥yn − M∑
m=1

d̃m ∗ αm − αM+1

∥∥∥2
2
+

λ

M∑
m=1

‖αm‖1 +
µ

2
‖GαM+1‖22 , (4)

where λ and µ are algorithm parameters. The final recon-

struction is obtained as
M∑
m=1

d̃m ∗ α̃m+ α̃M+1. While the use

of the approach of CSC-III or variants thereof is necessary
when directly integrating the CSR model with tomographic
inversion [23], the decoupling provided by the PnP approach
makes it optional rather than essential.

3. CSR FOR TOMOGRAPHY

To leverage the idea underlying the weighted convolutional
sparse coding based denoising of (2) for tomography, we uti-
lize the Plug-and-Play priors framework [25]. The framework
was originally inspired by solving a regularized inversion us-
ing the idea of variable splitting followed by use of the al-
ternating direction method of multipliers [30] that results in
iteratively solving two sub-problems corresponding to an in-
version step followed by a denoising step. Furthermore, it
was empirically observed that the algorithm converges to a
fixed point even if arbitrary denoisers are used in the itera-
tive framework. Specifically, the PnP reconstruction [25] is
obtained by iterating over the steps

x̃ = v̂ − u
x̂ ← F (y, x̃;β)

ṽ = x̂+ u

v̂ ← H(ṽ;λ)

u = u+ (x̂− v̂) ,

where F corresponds to an optimization problem correspond-
ing to the forward model, H is a denoising algorithm, and β
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and λ are algorithm parameters. In particular, for conven-
tional tomography problems, F is given by

F (y, x̃;β)← argmin
x

{
1

2
(‖y −Ax‖2W + β‖x− x̃‖22)

}
(5)

where y is a vector of tomographic projection measurements,
A is the projection matrix, and W is a diagonal matrix of
weights corresponding to the inverse variance of the noise.
While solving (5) is expensive, in practice we partially solve
it using a few iterations of an iterative algorithm.

The denoiser corresponding to CSC-II (Eq. (2)), H(ṽ;λ),
is given by

ṽl ← (I + λLPFG
tG)−1ṽ

ṽh ← ṽ − ṽl
wm ← 1/(D̃T

mṽh)
2 ∀m ∈ 0, ...,M − 1

α̃← argmin
α

{1
2

∥∥∥ṽh −M−1∑
m=0

αm ∗ d̃m
∥∥∥2
2

+ λ

M−1∑
m=0

‖wm � αm‖1
}

v̂ ←
M−1∑
m=0

d̃m ∗ α̃m + ṽl .

We use a fixed dictionary d̃ that is learnt from an offline
database for the proposed algorithm. Notice that even though
these sequence of steps do not correspond to solving an op-
timization problem, the PnP method allows for CSC-II (and
by extension the CSR model) to be used for tomographic
inversion.

4. RESULTS

Fig. 1. Training images and corresponding learnt convolu-
tional dictionary.

In order to test the proposed algorithm, we use phantoms
from the tomo-bank database [24]. Fig. 1 shows the nine
256 × 256 images from the database that we used to train
a multi-scale convolutional dictionary with 128 elements of
sizes 2 × 2, 4 × 4, 8 × 8 and 16 × 16. We use the SPORCO

Table 1. Comparison of the denoising performance of the
three convolutional sparse coding based denoisers in Section
2 on measurements with different noise levels. All values rep-
resent PSNR values in units of dB.

Input PSNR CSC-I CSC-II CSC-III
34.15 35.01 37.32 34.74
24.60 27.73 31.00 27.60
20.17 25.64 28.73 25.43
14.50 23.50 24.51 22.75

Ground Truth Noisy [PSNR: 20.17 dB] CSC-I [PSNR: 25.65 dB]

CSC-II [PSNR: 28.38 dB] CSC-III [PSNR: 25.43 dB]

Fig. 2. Illustration of denoising performance using the three
different convolutional sparse coding based methods in Sec-
tion 2. Notice the weighted scheme (CSC-II) produces a high
quality reconstruction and has a similar computational com-
plexity to CSC-I.

package [28, 31] for implementing the CDL and CSC algo-
rithms, using a value of λLPF = 7 for pre-processing the im-
ages. First, we test the different denoising strategies discussed
in Section 2. Table. 1 and Fig. 2 shows the results of different
denoising strategies using an image from the database that
is not in the training set. Notice that the weighted scheme
(CSC-II) offers superior performance across different noise
levels making it a useful method for using CSR as a regular-
izer for inverse problems. We believe that this is because the
weighting scheme encourages the use of the dictionary ele-
ments that are strongly correlated with the underlying image
features while discouraging fits to the noise. More impor-
tantly, CSC-II has the simplicity of CSC-I and offers compu-
tational savings compared to CSC-III along with better per-
formance.

Next, we test the performance of the proposed algorithm
on tomographic data sets. We compare the proposed algo-
rithm to a model-based algorithm using the edge-preserving
Markov-random field (MRF) regularizer [1] (with p = 1.2)
and a patch-based dictionary learning regularizer with a dic-
tionary of 128 elements of size 16 × 16 learnt from the
database. The patch model is used for tomography using
the PnP framework with appropriate averaging carried out
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Table 2. Comparison of the PSNR of tomographic reconstructions with respect to the original phantom for different levels of
noise.

PSNR 26 dB 20 dB 14 dB
Views MRF | PSC | CSC MRF | PSC | CSC MRF | PSC | CSC
256 25.07 | 21.41 | 24.84 23.23 | 20.68 | 23.87 22.17 | 20.07 | 22.57
128 22.18 | 20.33 | 22.99 21.07 | 19.80 | 21.96 20.06 | 19.06 | 20.68
64 18.71 | 18.09 | 20.79 18.10 | 17.69 | 19.42 17.22 | 17.05 | 17.87

Table 3. Comparison of the PSNR of the limited-angle tomographic reconstruction with respect to the original phantom for
various levels of noise.

PSNR 26 dB 20 dB 14 dB
Views MRF | PSC | CSC MRF | PSC | CSC MRF | PSC | CSC

70 28.43 | 28.12 | 28.60 26.64 | 27.82 | 27.41 25.24 | 27.70 | 26.21

MRF PSC CSC

MRF PSC CSC
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Fig. 3. Tomographic reconstruction using different algo-
rithms for sparse-view and noisy data corresponding to the
phantom in Fig. 2. The inset is a zoomed in section from the
center of the reconstruction.

Ground Truth

Data Set 1 [PSNR: 26 dB ] Data Set 2 [PSNR: 20 dB] Data Set 3 [PSNR: 14 dB]

M
RF

CS
C

PS
C

Fig. 4. Ground-truth image and limited-angle tomographic
reconstructions using different algorithms.

to perform the image denoising [28] and referred to in the
results as patch-based sparse coding (PSC). The W matrix
for the tomographic inversion is set to the identity matrix
since the measurements are corrupted by i.i.d Gaussian noise.
In all cases the parameters are chosen for the highest PSNR

in the reconstruction. The tomographic data was generated
by projecting the phantom (obtained from the tomo-bank
database [24]) in Fig. 2 at 64, 128 and 256 views with three
different levels of Gaussian noise corresponding to a PSNR
of 26 dB, 20 dB and 14 dB in the projection domain. The to-
mographic projection and back-projection was implemented
using ASTRA tool-box [32]. For the F sub-problem in
the PnP framework, we use 25 iterations of the optimized-
gradient method [33] and for the H sub-problem we set the
maximum number of iterations to 25. The total number of
outer-iterations is set to 300. Fig. 3 and Table 2 show the re-
constructed results from different scenarios. Notice that at the
low-noise and large-views case the MRF model outperforms
both the PSC and the CSC models. However, for the sparse
view and noisy data the CSC model significantly outperforms
the MRF and the PSC model. Finally, we test the proposed
algorithm on a limited angle noisy data set, motivated by
applications such as electron tomography [1]. The data was
generated by projecting the phantom shown in Fig. 4 at 70
angles between 20◦ and 160◦ at the three noise levels as in
the first case. Fig. 4 and Table 3 highlight that the proposed
algorithm performs better than the MRF model in each case
and is competitive to the PSC model for the high-noise cases.

5. CONCLUSION

We have presented an algorithm for using the convolutional
sparse representation model as a regularizer for solving tomo-
graphic inverse problems. To overcome the potentially poor
performance of conventional CSR based approaches we use
a data-adaptive weighting based denoising with the plug-and-
play framework for the tomographic inversion. This weight-
ing is simple yet vital to boosting the performance of the CSR
model compared to the conventional edge-preserving model
and the patch-based sparse representation model.
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