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ABSTRACT

Time-correlated single photon counting (TCSPC) is a powerful tech-
nique for lidar depth imaging, allowing for accurate range measure-
ments from very low light levels. However, single-photon detec-
tors used in TCSPC have a dead time after each photon detection,
which blocks registration of subsequent photons arriving within that
dead time, causing a distortion of the detection time distribution.
The most common approach to avoiding dead time distortion is to
optically reduce the photon arrival rate such that with high proba-
bility no photons arrive during the dead time. However, this pre-
vents the high photon flux acquisition necessary for real-time appli-
cations such as autonomous navigation. In this paper, we propose
a dead time compensation method that enables fast data acquisition
with dead time-limited detectors. Specifically, we model dead time-
affected detection times as a Markov chain, present a simple method
for approximating the stationary distribution, and estimate depths
using a log-matched filter matched to that distribution. Our method
applies to multimodal imaging systems where a standard camera is
used in conjunction with lidar to provide information about scene re-
flectivity. Simulation results for real 3D scenes show that our method
reduces the root mean squared error by several orders of magnitude
for the same acquisition time.

Index Terms— Computational 3D imaging, lidar, single photon
detection, dead time, Markov chain

1. INTRODUCTION

Autonomous vehicles promise safer and more efficient transporta-
tion systems, with anticipated outcomes including fewer fatalities,
increased mobility, reduced congestion, and changes in vehicle own-
ership patterns [1, 2]. A key element for realizing fully autonomous
vehicles is the environmental sensing system for mapping, localiza-
tion, object detection, etc., which directly influences driving deci-
sions [3]. Many proposed systems combine input measurements
from radar, lidar, and conventional cameras, which each have advan-
tages for particular tasks and environmental conditions [4–6]. Lidar
is an especially useful modality, as it provides high transverse and
longitudinal resolution and can operate in a wide variety of lighting
conditions. One form of lidar currently under development for au-
tonomous vehicles is based on time-correlated single photon count-
ing (TCSPC). Due to its sensitivity to individual photons and high
temporal resolution, TCSPC can reliably produce accurate range
measurements from repeated illumination and detection, even from
extremely low light levels [7–9]. Importantly, TCSPC lidar has been
shown to sufficiently sense weakly-reflective objects at long dis-
tances using eye-safe illumination levels [10], which are necessary
conditions for vehicular deployment.

One of the key downsides to the single photon detectors used in
TCSPC is that after each detection they have a dead time, a period

during which no other incident photons can be registered. While the
photon arrival statistics are well understood, the detection-dependent
dead times generally make the detection process much more difficult
to analyze. A common approach to avoid the complications of dead
time is to lower the photon flux at the detector to ensure that at most
5% of illuminations generate photon arrivals [11]. The arrival rate is
then low enough that it is unlikely for the dead time after a detection
to block a subsequent photon from being detected. However, this
mode of operation is undesirable for autonomous vehicles, which
must collect data as rapidly as possible in order to make real-time
navigation decisions. An alternative approach is to acquire data at
high flux and naïvely ignore the effects of dead time on data acqui-
sition. These effects are often called “pileup,” since early photons
block later photons, resulting in a skewing of the probability density
function (PDF) of detections towards earlier times [12]. Still, ignor-
ing dead time is inadvisable for vehicular lidar, as scene patches re-
turning high photon flux would be inaccurately perceived to be closer
than their true depth. Unfortunately, classical approaches to dead
time compensation assume synchronous dead time models [13–17],
which do not apply to modern TCSPC systems [18].

In [19], we characterized the detection time distribution affected
by dead time as the stationary distribution of a Markov chain, based
on which we proposed a depth estimator with improved accuracy
provided that the scene reflectivity and the ambient light level is
known. In this work, we present a simple approximation to the tran-
sition probabilities of the Markov chain, and the limiting distribu-
tion obtained from the approximated transition probability matrix
is used in the depth estimator. The main contribution of this pa-
per is a framework for incorporating the depth estimator into form-
ing full depth images, such as those required for autonomous nav-
igation. Supplemental reflectivity information has previously been
used to improve depth sensing tasks such as superresolution [20],
object segmentation [21], and vehicle detection [22], including aid-
ing in TCSPC lidar depth imaging [23]. We specifically describe
how a multimodal sensing system supplementing TCSPC lidar with
a grayscale camera can provide the reflectivity information for our
depth estimator. To reduce computational time, we quantize reflec-
tivity uniformly and show by a numerical example how depth es-
timation accuracy is affected by the number of quantization levels.
With this approach, we demonstrate the potential for fast, photon-
efficient depth acquisition that could be incorporated into real-time
imaging systems.

2. ACQUISITION MODEL

2.1. Photon Arrival Process

TCSPC lidar data is acquired by raster scanning a laser over a scene
and detecting back-reflected photons from the repeated pulsed illu-
mination at each scene patch indexed by (i, j) ∈ {(1, . . . , ni) ×
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(1, . . . , nj)}. The arrival times of photons at the detector from each
(i, j) are described by a Poisson process with intensity λi,j(t) [24].
Due to the pulsed illumination, each λi,j(t) is periodic with period
tr, and nr is the number of illumination periods in an acquisition.
Within one period, the intensity is a mixture of two components

λi,j(t) = λs
i,j(t) + λb

i,j(t), (1)

where λs
i,j(t) is the arrival intensity of signal photons due to the

illumination back-reflected from (i, j) and λb
i,j(t) is the arrival in-

tensity of background photons due to ambient light and dark counts.
The signal intensity is time-varying and scene dependent:

λs
i,j(t) = αi,jβs(t− 2zi,j/c), (2)

where αi,j ∈ [0, 1] is the reflectivity of (i, j), combining attenuation
effects due to object reflectance, radial falloff, view angle, detector
quantum efficiency, etc.; β ∈ [0,∞) is the illumination gain, corre-
sponding to the expected number of photon arrivals per illumination
from a unit reflectivity object; s(t) is the illumination pulse shape
normalized such that

∫ tr
0
s(t)dt = 1; zi,j is the depth of the surface

at (i, j); and c is the speed of light. Let z and α denote the full
depth and reflectivity images, respectively. In this work, we assume
the pulse shape is Gaussian s(t) ∝ exp[−t2/(2σ2

p)] with standard
deviation σp—although our approach holds for any pre-calibrated
s(t)—and β and λb

i,j(t) = λb are constant for all (i, j). The pa-
rameters σp, β, λb are assumed to be known, since they are easy
to obtain via calibration. The expected number of signal photon ar-
rivals per period is defined as Si,j =

∫ tr
0
λs
i,j(t)dt = αi,jβ, and the

expected number of background arrivals is B = λbtr. The total flux
at each point is given as Λi,j = Si,j + B, and the average signal-
to-background ratio is SBR = (β/(ninjB))

∑ni
i=1

∑nj

j=1 αi,j . The
PDF of photon arrival times in one period (i.e., relative to the most
recent illumination) is [24]

fA
i,j(t) = λi,j(t)/Λi,j . (3)

2.2. Markov Chain Model for Detection Times

Whereas photon arrival times at the detector are statistically inde-
pendent in accordance with the Poisson process model, the actual
registration of photons by the detector is not a Poisson process due
to the detection-dependent dead time. Modern TCSPC systems are
modeled as nonparalyzable and asynchronous, which means that af-
ter a photon is detected, the detector is immediately forced to be
insensitive to incoming photons and is then reset after a fixed dead
time duration td, irrespective of the position within an illumination
period [18, 19]. Note that the next detected photon is the first pho-
ton that arrives at the detector after the reset. Because the arrival
times are statistically independent and the reset time only depends
on the last detection, we can model a sequence of detection times
as a Markov chain. The Markov chain has a continuous state space
[0, tr). For practical applications, it is reasonable to consider a dis-
crete approximation, because measurements from practical detectors
are quantized. In the following, we provide a simple method to con-
struct the approximated transition probability matrix; a more rigor-
ous treatment can be found in [19].

The same formulation applies to all (i, j), so we proceed without
the unnecessary pixel index notation. Let {T`}`≥1 with T` ∈ [0,∞)
denote the set of absolute detection times and let {X`}`≥1 denote
detection times defined as X` := T` mod tr ∈ [0, tr). It is well-
known that given the most recent absolute detection time T`, the
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Fig. 1: A close match between the histogram of detection times and
the computed PDF fD shows that our Markov chain method ac-
curately predicts the effect of dead time and the resulting limiting
distribution of detection times. The plot further demonstrates how
the arrival PDF fA, a discretization of fA (3), is more distorted as
the overall flux increases, with the dead time causing ripples in the
waveform and a shift in the peak towards earlier times. The simu-
lation was generated with σp = 2 ns, nr = 50000 illuminations,
tr = 100 ns, and td = 75 ns. The vertical scale is constant for each
subplot, with a magnified inset to show the otherwise unseen ripple
when S = 0.1 and B = 3.16.

next absolute detection time T`+1 takes values in [T` + td,∞) with
conditional PDF [24]

fT`+1|T`
(t`+1|t`) = λ(t`+1) exp

(
−
∫ t`+1

t`+td

λ(τ)dτ

)
. (4)

Notice that T`+1 > ktr+T`+td implies there are no photon arrivals
for successive k periods, which has probability exp(−kΛ) and this
probability decays exponentially in k. Therefore, we can approxi-
mate fT`+1|T`

as being supported on a finite interval [T`+td,Ktr] ⊂
[T` + td,∞) for some positive integer K. Note that K need not
be large for the approximation to be accurate, especially when Λ is
large.

With the above observation, we can now construct our approx-
imated transition probability matrix of the Markov chain {X`}`≥1

that models detection times. We first partition the state space
[0, tr) into nb equally-spaced time bins and the bin size ∆ satis-
fies that nb := tr/∆ and nd := td/∆ are positive integers. Let
{∆n}1≤n≤nb

denote the bins and the transition probability matrix
is then an nb × nb matrix P with Pm,n an approximation to the
conditional probability Pr(X`+1 ∈ ∆n|X` ∈ ∆m). We further
partition the truncated time interval [0,Ktr] into Knb time bins
with bin size ∆ and bin centers {bn}1≤n≤Knb

. Entries of P are
then defined as

Pm,n =

K−1∑
k=min{k:knb+n>m+nd}

λ(bn) exp

− knb+n∑
u=m+nd

λ(bu)


form,n = 1, . . . , nb. Each summand is a discrete approximation of
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Fig. 2: Results for simulated detections from a true 3D scene illustrate the effectiveness of using the Markov chain modeling for high-flux
acquisition. Using a 3-bit grayscale reflectivity approximation, our MCPDF method outperforms both low-and high-flux depth estimate
for the number of illuminations nr = 100 and 2000. Our MCPDF method approximately matches the LF performance with 20× fewer
illuminations, greatly speeding up acquisition.

fT`+1|T`
(ktr + bn|bm) defined in (4) on the finite interval [0,Ktr].

To make P a transition probability matrix, we normalize P such
that it has row sum equal to 1. Finally, the approximated limiting
distribution of detection times fD, or equivalently the stationary dis-
tribution of the Markov chain, is the leading left eigenvector of P .
Fig. 1 shows that such an approximation is sufficiently accurate, as it
closely matches the simulated histogram in all tested (S,B) pairs.

3. ESTIMATION ALGORITHM

Periodic, time-quantized acquisition results in a histogram h =
[h1, . . . , hnb ] of detection counts in each time bin. For a Poisson
process whose intensity λ(t) is known up to a delay, the maximum
likelihood (ML) estimate of the delay is the shift that maximizes the
output of the log-matched filter, i.e., the filter with impulse response
log[λ(t)] [25]. For an acquisition made at low flux, the log-matched
filter can correctly use the photon arrival intensity because the ef-
fects of dead time can be considered negligible. If used for high-flux
acquisition, however, a filter matched to the arrival intensity is sub-
optimal because of the mismatch between the pulse shape and the
actual distribution of detection times. In [19], the authors outlined
a number of depth estimation strategies, several of which we will
test here. For each method, the histogram of detection counts is
circularly convolved with a time-reversed detection time PDF:

m̂ = arg max
m

hm ~ log(f−m), (5)

where the negatively-indexed subscript denotes time-reversal. Con-
version to distance units is the straightforward transformation ẑ =
(m̂− 1

2
)∆c/2.

Two separate acquisition types are proposed: a low-flux acquisi-
tion resulting in histogram hL first attenuates the photon flux (e.g.,
with a neutral density filter) so the average photon arrival rate for
the scene is 0.05 and the effect of dead time is minimal; a high-flux
acquisition applies no attenuation and yields a detection histogram
hH . We also consider two possible filters, with fA a discretization
of the arrival PDF fA(t) and the detection PDF fD as computed
in Section 2. The methods combine acquisitions and filters as fol-
lows: the conventional method LF uses histogram hL and filter fA,
the naïve high-flux method HF uses hH and fA, and our proposed
Markov chain-based method MCPDF uses hH and fD.

One crucial component in the accurate computation of fD is the
requirement that αi,j is known. Estimating αi,j directly from the
photon detections is difficult, as the coupled relationship between
the depth and reflectivity parameters is further complicated by the
dead time. Instead, since the target application of our depth imaging
system is autonomous navigation, other sensing modalities are likely
available that could supplement the lidar with information relevant to
the reflectivity. We assume a conventional camera coaxially aligned
with the lidar and spectrally filtered to accept the same wavelength
can acquire a grayscale image that is a sufficient approximation of
α. Then the camera image α̃ acquired simultaneously with the lidar
data can be used in the depth image reconstruction. Since recompu-
tation of fD with each new α̃i,j would be a slow and inefficient pro-
cess, we instead precompute f̃D for a small set nq of evenly spaced
values of α over [0, 1]. Then for each (i, j) the f̃D for the closest
value to α̃i,j is used in the log-matched filter to estimate depth.
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Fig. 3: Comparison of log10(|ẑ − z|) for HF and MCPDF for the
high-flux acquisition with nr = 100 illuminations. The error for
HF in (a) is lower for darker scene patches with detection PDFs less
distorted by dead time, whereas the error for MCPDF in (b) is lower
for lighter scene patches which reflect back more signal photons.

4. SIMULATION RESULTS

To validate our depth estimation algorithm, we simulate detection
data using ground truth depth and reflectivity images from the Mid-
dlebury stereo dataset [26]. The color images are first converted to
grayscale and then normalized so that αi,j ∈ [0.1, 1.0]. The dispar-
ity image is converted to a depth map using intrinsic camera prop-
erties, and the scene is arbitrarily shifted by 10 m (66.7 ns). Both
images are downsampled to 93 × 105 pixels to reduce processing
time. For all simulations, we use parameter values of β = 6,B = 3,
σp = 0.2 ns, ∆ = 0.02 ns, tr = 100 ns, and td = 75 ns.

Fig. 2 shows the results of simulated acquisitions and depth es-
timation for the Bowling scene with the number of illuminations
nr = 100 and 2000. Reflectivity measurement by a 3-bit grayscale
camera is emulated. Low-flux acquisition results in 4.80 and 96.3
detected photons per pixel (ppp) over the scene for the short and
long acquisitions, respectively. Without first attenuating the photon
flux, the high-flux acquisition detects photons much faster, with an
average rate of just more than one photon detection per illumination.
The depth estimation results for the short acquisition demonstrate
why the LF approach is insufficient for real-time applications—there
are simply too few signal detections to reliably estimate the depth.
Increasing nr enables an improvement in root mean squared error
(RMSE) of several orders of magnitude for the LF method, with
RMSE computed as

RMSE(ẑ) =

√√√√ 1

ninj

ni∑
i

nj∑
j

(zi,j − ẑi,j)2. (6)

On the other hand, the results from the HF estimator barely improve
as nr increases since it does not take dead time into account, so the
error is dominated by a bias. The RMSE of our proposed Markov
chain-based MCPDF method continues to decrease as more data is
acquired. Furthermore, MCPDF achieves nearly the same RMSE for
the short acquisition as LF does for the long acquisition, enabling
accurate depth imaging to be performed 20 times faster.

A comparison for the high-flux acquisition in Fig. 3 further il-
lustrates the advantage of MCPDF. The absolute error for HF and
MCPDF is shown on a logarithmic scale. The figure reveals that
when the overall arrival rate is high enough, the smallest errors for
HF somewhat counterintuitively occur for the darkest pixels, since
their detection PDFs are least distorted by the dead time. On the
other hand, by correctly anticipating the dead time distortion, errors
for MCPDF occur roughly proportionally with the number of de-
tected photons.

Number of bits
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 [m
]
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Effect of camera quantization

LF HF MCPDF

Fig. 4: The performance of MCPDF improves as more quantiza-
tion levels are used for the reflectivity estimate. The plot shows the
median RMSE values for 100 realizations of detection data for the
Bowling scene with nr = 2000 illuminations.

We also explore the effect of the quantization of α̃ on the recon-
struction error. For the same experimental parameters as previously
used, 100 realizations of photon detection data were generated for
different numbers of bits for the Bowling scene reflectivity. Fig. 4
shows the median RMSE results over the 100 trials. The median
is plotted since significant outliers occasionally occurred when the
RMSE for the LF method was dominated by a small number of pix-
els with large depth errors. It is clear from the plot that the perfor-
mance of MCPDF greatly improves with the number of quantization
levels, whereas the RMSE of the LF and HF methods does not de-
pend on information about the reflectivity. Fig. 1 helps illustrate
why the methods depend differently on the quantization of α̃. For
the LF and HF methods, which use fA, a change in the estimated
value of αi,j only changes the strength of the signal relative to the
background, but the position of the peak is unaffected, so the log-
matched filter depth estimates are mostly unchanged. On the other
hand, the shape of fD, including the position of its peak, depends
strongly on the exact αi,j value, so a closer approximation of αi,j

from finer quantization yields a more accurate approximation of fD

and thus a better log-matched filter depth estimate. Moreover, Fig. 4
implies that for the Bowling scene used in our experiment, 3 bits are
sufficient to achieve small performance degradation due to reflectiv-
ity quantization, though the number of bits needed is likely affected
by the range of αi,j values.

5. CONCLUSION

Real-time depth imaging is a critical component of navigation sys-
tems for autonomous vehicles. In this work, we demonstrated that
precise modeling of the effects of dead time on photon-counting li-
dar systems enables fast and accurate depth image acquisition. A
simple, discrete-time approximation to the PDF of the next photon
arrival time after a detector reset leads to efficient computation of the
limiting distribution for the Markov chain of photon detection times.
A grayscale camera is used to capture the approximate scene reflec-
tivity in order to choose the correct limiting distribution for each
pixel. Results show our method can achieve accurate depth images
20 times faster than the conventional method. Future work could
incorporate spatial information such as in [23, 27], allowing for ac-
curate imaging with even lower photon counts and further reducing
acquisition times.
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