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ABSTRACT 
 
Difficulty in analyzing deep learning systems is preventing 
association of its parameters and state outputs with elements that 
are derived from theoretic considerations.  Medical and criminal 
justice communities are excited by the possibilities nevertheless 
reluctant to adopt machine learning for fear of errors and bias.  
There is also concern among educators that mystifying learning 
may have long-term adverse pedagogical implications on human 
learning. Deep learning techniques have not received enthusiastic 
attention in the realm of communication systems, either.  This is in 
part due the effectiveness of traditional analytical solutions that 
render classification error rates larger that 10-3 unacceptable.  
Understanding of deep networks for communications, and ability 
to perform comparison tests can be useful in developing scalable 
methods to understand them in more complex scenarios.   This 
paper contributes a perspective and analysis with focus on Nyquist 
and non-Nyquist pulse shapes for bandlimited channels.  It is 
hoped that this fundamental presentation motivates wider 
consideration of neural networks and deep learning for 
demodulation. 
 

Index Terms— LMS, DSP, demodulation, neural network, 
deep learning. 
 

1. INTRODUCTION 
 

Over the past few decades, adaptive signal processing has 
broadened to include learning systems [1-4].  Although the 
terminology can become blurred, one suggested distinction is that 
adaptive systems update their parameters while performing their 
intended function, while learning systems adjust their parameters 
in advance during a training phase.  Regardless of the definitions, it 
is clear that more and more systems are becoming data-centric – 
using adaptable-parameter topologies that “learn” their 
functionality directly from data.  Traditional adaptive linear 
combiners have expanded to include neural networks and deep 
learning topologies, which contain multiple layers of linear 
combining separated by nonlinear activation functions.  While 
deep learning techniques have demonstrated significant 
improvements in performance for many regression and 
classification problems, they are not without challenges.  Perhaps 
one of the biggest concerns is the difficulty of analyzing and 
explaining their behavior.  The “magic box” quality of deep 
learning is preventing association of its parameters and state 
outputs with elements that are derived from theoretic 
considerations.  Medical and criminal justice communities are 
excited by the possibilities nevertheless reluctant to adopt machine 
learning for fear of errors and bias.  There is also concern among 
educators that mystifying learning may have long-term adverse 
pedagogical implications on human learning.  Research is being 

focused on this topic as more attention is being brought to the field 
[5]. 

In terms of adaptation, many of the new learning systems are 
still based on gradient descent techniques that closely resemble the 
original LMS algorithm.  The popular backpropagation technique 
is a method for estimating the sensitivity (gradient) of the system 
cost function with respect to each weight in a neural network.  
Research has produced many variations of this technique, along 
with new activation functions and deeper architectures for which 
gradient descent performs efficiently [4].   

In the three decades since the backpropagation technique was 
introduced, neural networks and deep learning have been embraced 
in applications like speech and image classification, where 
performance gains over traditional methods are significant.  In 
fields like communications, where traditional solutions have 
proven very effective, adoption has been slower.  Literature search 
in this area reveals a number of point-studies, in which researchers 
evaluate neural networks as replacements or enhancements to 
existing demodulator or equalizer algorithms (e.g., [6-13]).  A 
helpful addition would be an elementary study that examines 
learning approaches for simple traditional demodulators.   

This paper contributes such a perspective that the author 
would like to have read when first exploring this area.  It focuses 
on several elementary neural network structures and compares 
them with traditional textbook demodulators.  Feature 
representation is a key element of learning algorithms, and 
understanding the feature representation in these shallow networks 
can provide insights and suggest research directions for deeper 
networks.   Furthermore, exploring simple systems that are 
mathematically tractable will help us with the characterization of 
learning techniques that are increasingly being viewed as a magic 
box. 
 

2. COMMUNICATION SYSTEM MODEL 
 
This study considers a baseband communication technique known 
as pulse-amplitude-modulation (PAM), which is often the starting 
point for evaluating bandlimited communications in many 
textbooks [14, 15].  Using discrete-time notation, a message 
waveform m(n) is produced using a series of time-shifted symbol 
pulses, p(n).   

 
                              𝑚(𝑛) = ∑ 𝑑(𝑝(𝑛 − 𝑘𝐷)-

(./                           (1) 
 

The variable n represents the discrete-time sample index, and the 
integer D defines the symbol period in samples.  A binary 
antipodal system is considered here, with independent symbol 
values from the set dk ∈ {1, -1}.  The message passes through an 
additive white Gaussian noise (AWGN) channel and is input to a 
neural network demodulator (or simply neural demodulator) as 
shown in Fig. 1.  The demodulator input signal x(n) is sampled at a 
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rate of D samples per symbol, and only one symbol decision is 
made for every D samples shifted into the delay line (D = 4 is used 
in subsequent simulations).  Ideal synchronization is assumed such 
that the symbol being demodulated is centered within the span of 
the tapped delay line. The demodulator output y(n) is down-
sampled by D as shown in Fig. 1 to produce soft symbol decisions.  
During neural network training, the soft symbol decisions are used 
to compute backpropagation error (as described below).  For 
demodulator performance evaluation, the soft symbol decisions are 
converted to hard decisions using a threshold value of zero. 

Digital communication signals are typically constructed using 
basis expansions such as (1).  The time-shifted pulses are basis 
functions and the symbol values are expansion coefficients. This 
study considers two common pulse shapes for p(n) [16].  The first 
is a root-raised-cosine (RRC) pulse with rolloff factor of 25% and 
duration of 33 samples (~8 symbols).  This is a member of the 
Nyquist family, which has the useful property that all symbol-
spaced copies are orthogonal to each other.  Therefore, the basis 
functions in (1) are orthogonal.  The second symbol shape is the 
Gaussian-filtered (GF) pulse, which is produced by passing a 
rectangular symbol pulse through a filter with Gaussian impulse 
response.  The specific GF pulse used here has time-bandwidth 
parameter BT = 0.5 and duration 13 samples (~4 symbols).  
Symbol-spaced copies of the GF pulse are not orthogonal to each 
other. 
 

3. NETWORK TOPOLOGIES 
 
This section presents several elementary neural demodulators 
based on a time-delay neural network (TDNN) topology.  They are 
elementary in the sense that each contains a minimum number of 
neurons for its type.  Each uses time-varying features of the input 
signal over a small window of time to classify received data 
symbols. Their structures resemble simple traditional 
demodulators, but they include nonlinear activation functions and 
their weights are adapted using supervised learning techniques 
similar to the LMS algorithm. Simulations in the subsequent 
section examine behavior and performance of these neural 
demodulators compared to similar traditional topologies.  

The feed-forward TDNN (FF-TDNN) shown in Fig. 2 is a 
single-layer network suitable for binary signal classification. The N 
samples of received signal stored in delay line are represented by 
an N-dimensional input vector x.  The single neuron computes a 
linear combination of the input samples followed by a nonlinear 
activation function, f, as expressed in (2).  Except for the activation 
function, this simple neural network resembles the discrete-time 
correlation detector (matched filter) used in many communication 
systems. 

 
 

 
Fig. 1. System model. 

 
Fig. 2. Single-layer feed-forward TDNN demodulator. 

 
Fig. 3. Two-layer convolutional TDNN. 

 
𝒚(𝑛) = 𝑓(𝒙3𝒘)                                                             (2) 
 

𝒙 = 𝒙(𝑛) = 5
𝑥(𝑛)
⋮

𝑥(𝑛 − 𝑁 + 1)
; ,					𝒘 = 5

𝑤?
⋮

𝑤@A/
; 

 
The activation function used throughout this study is the 
hyperbolic tangent, which is commonly used in shallow neural 
networks.  We also omit neuron bias values due to the antipodal 
symmetry of the input data and the zero-mean additive noise 
considered here.   

Fig. 3 shows a simple two-layer convolutional TDNN (C-
TDNN) suitable for binary classification.  The three neurons in the 
convolutional layer are not fully connected to the input delay line.  
Their N-tap receptive fields are offset by D samples, and all three 
neurons are constrained to use the same weights wc and activation 
function, f.  From a communications perspective, the convolutional 
network resembles a matched filter followed by a symbol-spaced 
equalizer.  
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The convolutional layer equations are expressed in (3), where 
the activation function operates element-wise on the product of the 
weight vector and input matrix X. 
 

                     𝒚B = 𝑓(𝑿3𝐰B),					𝐰B = 5
𝒘𝒄,?
⋮

𝒘𝒄,@A/
;                         (3) 

 
       𝑿 = [𝒙(𝑛) 𝒙(𝑛 − 𝐷) 𝒙(𝑛 − 2𝐷)] 
 

       𝒙(𝑛) = 5
𝑥(𝑛)
⋮

𝑥(𝑛 − 𝑁 + 1)
;					 

 
The output neuron combines the results of the convolutional layer 
using weight vector wo and activation function f. 
 

               𝒚(𝑛) = 𝑓(𝒚B3𝐰I),				𝒘I = 5
𝒘I,?
𝒘I,/
𝒘I,J

;                          (4) 

 
The final topology is the recurrent TDNN (R-TDNN) of Fig. 

4.  An augmented input vector xr combines the input samples from 
the delay line with a feedback sample y(n-D).  The network 
equations are expressed in (5).  The one-symbol delay gives this 
network the form of a matched filter with decision-feedback 
equalization.   
 

𝒚(𝑛) = 𝑓(𝒙K3𝒘)                                                      (5) 
 

𝒙K = L

𝑥(𝑛)
⋮

𝑥(𝑛 − 𝑁 + 1)
𝑦(𝑛 − 𝐷)

N ,					𝒘 = O

𝑤?
⋮

𝑤@A/
𝑤@

P 

 
 

4. DEMODULATOR TRAINING 
 
Training was performed using supervised learning with 
backpropagation.  A modified version known as real-time recurrent 
learning (RTRL) was used for the R-TDNN [2, 3].  These are 
gradient descent optimization methods that minimize a given cost 
function at the demodulator output.  The cost function selected 
here is mean squared error (MSE).  Minimizing MSE is equivalent 
to maximizing signal-to-noise ratio (SNR), which is the 
optimization goal for the traditional matched filter. The 
demodulator output error is defined as follows. 
 
                                  𝑒( = 𝑑( − 𝑦(𝑘𝐷)                                        (6) 
 
The term y(kD) is the sampled demodulator soft output and dk is 
the known symbol value.  The MSE cost function is estimated by 
averaging the squared demodulator output error over a training 
epoch (message) of L=1000 randomly generated symbols.  Error 
gradients are computed for each weight, and all weights are 
updated at the end of each epoch.  The basic backpropagation 
algorithm with learning rate of η = 0.1 provided acceptable 
convergence for a training set of 2000 epochs.  Unit-energy pulse 
shapes and uniformly distributed initial weights in the range ±0.1 
produce initial network output values in the linear region of the 
activation function where the local gradient gain is high.   
 

 
Fig. 4. Single-layer recurrent TDNN. 

 
This ensures good convergence in the early training iterations. 
After training is completed, symbol error rate is evaluated for each 
demodulator using randomly generated messages and noise. 
 

5. TRAINING AND TEST RESULTS 
 
We begin with the FF-TDNN topology and a message synthesized 
using RRC pulse shapes.  The number of network weights N was 
set equal to the length of modulation pulse shape (33 samples), and 
the signal-to-noise ratio (ES/N0) was set to 7 dB.  The noise level 
affects training in two ways.  When the noise power is too high, the 
weight update equation will be noisy and prevent convergence to a 
clean result.  Batch-mode training helps this somewhat by 
averaging the gradient estimates over a training epoch prior to 
adjusting the weights.  On the other hand, training with too little 
noise leads the network toward suboptimum solutions that do not 
provide noise filtering. Training at ES/N0 = 7 dB provided a good 
balance between these effects.  As shown in Fig. 5, the learned 
weights are nearly identical to the RRC pulse shape and represent a 
matched filter.  The neural network has learned the orthogonal 
series representation of the message, and the network weights are 
the analysis filter needed to recover the data with minimum noise 
and inter-symbol interference (ISI).   

Next we retrain the 33-tap FF-TDNN using messages 
synthesized using GF pulse shapes.  Training was again performed 
at ES/N0 = 7 dB.  The results in Fig. 6 show that for this case the 
neural network learned a different feature detector (not a matched 
filter).    Matched filtering with the GF pulse shape leads to ISI, 
which increases MSE at the network output.  Instead, the neural 
network has learned an equalizing filter response that balances the 
minimization of noise and ISI.  From a sampling perspective, the 
neural network has learned an approximation of the biorthogonal 
analysis filter needed to recover the data from the message 
expansion in (1) [17].  The exact biorthogonal analysis filter, q(n), 
is shown in Fig. 6 for comparison.   

Next we train the C-TDNN with messages comprised of GF 
pulse shapes.  The input layer weights (33 per neuron) are 
randomly initialized as before, and the output layer weights are 
initialized to [0 1 0] to give preference to the center symbol.  
Training was again performed using an ES/N0 level of 7 dB.  
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Fig. 5. RRC pulse shape and weights for FF-TDNN. 

 
Fig. 6. GF pulse, weights for FF-TDNN, and biorthogonal pulse. 

 
Fig. 7. GF matched filter and weights for R-TDNN. 

The convolutional layer weights converged to the same equalizing 
filter as in Fig. 6, and the output layer weights converged to wout = 
[-0.01 0.93 -0.01]T.  The output layer effectively ignored the outer 
two neurons in the convolutional layer.  For comparison, a 
common traditional demodulation technique for GF pulse shaping 
would use a matched filter in the convolutional layer followed by a 
3-tap zero-forcing equalizer (ZFE) in the output layer [14].  The 
ZFE equalizer weights for the GF pulse used here would be wZFE = 
[-0.2 1.0 -0.2]T.   

The final experiment applies the R-TDNN to the system with 
GF pulse shaping. As in the other cases, training was performed at 
ES/N0 = 7 dB, and initial weights and learning rate were similarly 
configured.  The training results for a 14-weight R-TDNN are 
compared with the GF pulse shape in Fig. 7.  Weights w0-w12 are 
the feed-forward weights, while w13 is the feedback weight.  It is 
interesting to note the asymmetric weight pattern.  The higher 
weights (w9-w12), which overlap the prior symbol, converged 
closely to the matched filter, while the lower weights (w0-w3), 
which overlap the subsequent symbol, converged to an equalizer 
response.  Each side of the feed-forward response converged in a 
way to make best use of the available information. 

A summary of the symbol error rate curves for each of the 
neural demodulators is shown in Fig. 8.    For RRC pulse shaping, 
the FF-TDNN performed essentially the same as the ideal matched 
filter (differences of 0.1 dB or less are attributed to simulation 

variance).  This is consistent with the close agreement between the 
learned weights and the RRC pulse in Fig. 5.  For GF pulse 
shaping, the traditional matched filter performs poorly due to ISI; 
however, performance improves significantly with the addition of a 
zero-forcing equalizer.  The FF-TDNN and C-TDNN both perform 
slightly better than the matched filter plus ZFE, indicating that the 
minimum-MSE optimization of the neural demodulators found 
better balance between noise and ISI.  The R-TDNN performed 
slightly better than the FF-TDNN and C-TDNN due to the 
additional information provided by the estimate of the previous 
symbol.  For comparison, Fig. 9 includes performance of a 
maximum-likelihood sequence estimator (MLSE) for the GF pulse 
case.  MLSE is known to provide optimum performance in 
channels with non-Nyquist pulse shapes [14], the results agree 
closely with ISI-free case of RRC pulse shapes.  

 
6. CONCLUSIONS 

 
From a communications perspective, the elementary neural 
demodulators considered here were able to learn feature detection 
equivalent to a matched filter or equalizing filter, depending on the 
modulation pulse shape.  These results are intuitively satisfying 
because network training is driven by minimization of noise and 
interference at the symbol decision point.  From a signal 
representation or sampling viewpoint, communication signals can 
be expressed using a basis expansion with time-shifted pulses 
serving as basis functions and the data values being the expansion 
coefficients.  There is typically a dual or biorthogonal pulse shape 
that allows the data to be recovered directly from the message 
using linear projection.  When trained with additive noise, the 
neural demodulators learned to approximate these biorthogonal 
pulse shapes with the added constraint of noise minimization.   

Although deeper networks are not needed for the simple PAM 
system considered here, they can provide additional functionality 
or improve performance for more complex modulation formats or 
channel conditions.  For bandpass communication systems, a more 
general approach would be to use additional layers at the input of 
the neural network that map complex (I/Q) samples into a new 
feature space suitable for the particular modulation format.  The 
initial transformation could be learned as part of the training 
process as well, which is a key concept in deep learning techniques 
[18].   

 

 
Fig. 8. Symbol error rate performance summary. 
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