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ABSTRACT

This paper presents a survey of the ideas behind the particle filter-
ing, or sequential Monte Carlo, method, from at least 1930 up to the
present day. The particle filter, which is now 25 years old, has been
an immensely successful and widely used suite of methods for filter-
ing and smoothing in state space models, and it is still under research
today. The key ideas that led to the development in 1993 of the orig-
inal particle filter, the bootstrap filter, were Monte Carlo integration,
Importance Sampling, Bayesian updating, Probabilistic State Space
models, and Sampling-Importance-Resampling. We survey these
methods within their historical context and then provide a general
framework for description of most current variants on the particle
filtering methodology, based upon updating the joint smoothing dis-
tribution of the states. This framework aids in the understanding of
the various elements of a particle filter, including resampling. pre-
diction and weighting. We further summarise recent developments
and look to the future of the methodology.

Index Terms— Importance sampling, Monte Carlo, MCMC, fil-
tering, smoothing, bootstrap filter

1. INTRODUCTION

In the year of writing this paper the bootstrap filter of [1] is 25 years
old, and there is much to celebrate about this fruitful development.
Research is still active in the area, generating new methods for Big
Data and for high-dimensional models, as well as applications in
many surprising fields. The historical development of the techniques
required for particle filtering was long and complex, commencing in
the 1930s at least. The educational approach we take in this paper is
to couple the required methodological developments with the histor-
ical commentary: the methodological basics are introduced along-
side notes on their historical development, with the aim of produc-
ing an informal tutorial to the topic, while setting the methods in
the bigger picture of the historical process. This I regard as impor-
tant for students since it is very easy to focus on just one algorithm,
say the classic bootstrap filter [1] without an appreciation of where
it sits amongst other developments, thus limiting the possibility to
see new directions and potential combinations with other techniques.
There are many good tutorials now available on particle filtering, see
[2,3,4,5,6,7,8,9, 10, 11] to which we refer the reader for more
detailed coverages than are possible here. And with only one page of
citations possible, we necessarily neglect to cite many great papers
on this topic, for which we apologise. In particular we do not have
space to discuss the excellent theoretical analysis papers by authors
such as Del Moral, Crisan, Lyons to name but a few of the founders.

The paper presents first ideas from before the ‘Monte Carlo’ era,
including Bayes’ Theorem. Then we present in historical order all of
the ingredients that were required for the development of the particle
filter. We next present a general framework for describing most of
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the current variants of particle filtering, followed by a look to recent
trends and the future.

2. PREHISTORY

The ‘Laws of Chance’, or probability, were formulated and stud-
ied by De Moivre and Bernoulli, and following this early work the
fundamentals for the Bayesian updating required for particle filters
arrived as early as the 18th century. In 1763,' a posthumous es-
say towards solving a Problem in the Doctrine of Chances by the
Rev. Thomas Bayes [12] appeared, giving the first known example
of ‘inverse probability’ in which a parameter of a distribution is in-
ferred by what we now term ‘Bayesian Reasoning’. A more general
presentation was later given by Laplace [13] and now we have the
formulation in enough generality for our purposes today: if we ob-
serve a random outcome y from an experiment, then the probability
of a second, linked, random event x can be determined as:

P(y|z)P(x)
P(y)

where P(z) is the so-called prior probability of x, the probability
that « occured in the absence of any information about whether y
has occurred, and P(y|x) is the likelihood, the probability that y
occurs given that  has occurred. A simple example of linked events
of this type would take x as the event that it rained yesterday and y
being the event that it has rained foday. The same formula of course
occurs when x and y are dependent random variables and probability
mass functions P() are replaced by probability density functions f/()

g() and p().

P(zly) = (€]

3. EARLY DEVELOPMENTS: 1930S TO 1990S

Sadly for us, Bayesian theory was largely discredited for much of
the 20th century, partly because of the difficulty in determining the
prior distribution P(z), which could be subjective and could bias the
results of reasoning, and instead ‘classical statistics’ in the Fisherian
mode was dominant. Nevertheless, an increasing group of academics
and practitioners pioneered the use of Bayesian theory and applica-
tions, including for example such revered names as Harold Jeffreys,
Richard Cox, Jimmy Savage, Bruno de Finetti, Denis Lindley and
Adrian Smith, a lineage that we have chosen partly as it takes us all
the way to the early 1990s and the origins of particle filtering with
Adrian Smith’s research group at Imperial College London. These
researchers report that it was in fact very difficult to have Bayesian
methods published in the top journals owing to fierce resistance from
the mainstream statistical community. It is interesting to observe that
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the (probabilistic) needle has (finally) swung back in the opposite
direction, with Bayesian theory usually being the starting point for
understanding of Machine Learning and Artificial Intelligence meth-
ods in the current climate. A personal observation is that the Engi-
neering and specifically the Signal Processing community was much
more open than the statistical community to Bayesian approaches,
from the 1990s onwards, provided issues of prior modelling were
carefully justified.

3.1. State space models, filtering and Kalman filters

We are now in a position to state the main underpinning equations for
Bayesian updating of probabilities in time series models. It is conve-
nient to specify our models as Markovian state space models (a term
that originated in the Control Engineering discipline through Rudolf
Kalman in 1960) with time index ¢, in which a hidden (unobserved)
random state z; is to be inferred from some data y;.> Specifically,
the state is assumed to evolve randomly over time, starting at ¢t = 0,
conditioned only on where it was at the previous time step, and the
observation depends only upon the value of the current state, sum-
marised as a discrete time state space model:

f(@t]|zoe—1) = flmlze—1), g(ye|To:t, yor—1) = g(ye|ze)

Here the notation ¢, .1, , t2 > t1, is used to specify a vector of states,
[¢, Tty 41 ... Tty |. Note that we will use lower case notation for ran-
dom variables and their realised values from now on, as there should
not be ambiguity. Note that the form of the two densities f(z...)
and g(y...) are generally designed to match the problem at hand as
accurately as possible, based on theoretical analysis or empirical ob-
servation of datasets.

Having outlined the model, the inference task can now be spec-
ified. The canonical inference objective is termed filtering, not to
be confiused with deterministic digital filtering. Instead, we pose a
statistical filtering problem, which in its most general version deter-
mines the conditional distribution of the current state x;, given all
observations, i.e. p(x+|yo:+), which may be obtained directly in a
sequential form from an adaptation of Bayes’ Theorem:

P(ze|yo:e—1)g(ye|2e)
P(yelyo:t—1)

eyo:—1)g(ye|o:
(o) = P(@e|yo:e—1)g(ye|zos) _
P(tlyo:e—1)

@3]
This is often known as the correction step, preceded by the predic-
tion step:

p(ze|yo:e—1) = /f(l’t\CEz—1)p(£Bt—1|yo:t—1)dl’t—1 3)

These equations were first obtained, independently in the 1930s,
by Andrey Kolmogorov and Sydney Chapman, the celebrated
Chapman-Kolmogorov equations for Markov processes. Sequen-
tial application of these two equations as time ¢ increments is the
basis for the Bayesian filtering task. Having determined the filtering
density, p(x¢|yo:+), estimates of x; may be computed, for example
the posterior mean &; = fxt 2+¢p(x¢|yo:¢ )dx or the Maximum a

posteriori (MAP) estimate z)""F = argmax,,, p(2¢|yo:¢). Unfortu-
nately only a few special cases can be solved in closed form. The
first case is the classic Kalman Filter, which applies exactly when
the state space model is linear and Gaussian. The resulting filtering
density can be shown to be Gaussian, p(z¢|yo:t) = N (z¢|my, Pr),

2In fact, much less restrictive assumptions are possible for Bayesian up-
dating, and especially for particle filtering, but the Markovian asumption is a
simple and commonly used starting point.

although we do not give the details here. The Kalman filter does
however play a substantial role in particle filtering methods, and
more extensive surveys give details.

In order to gain a more advanced interpretation that will be use-
ful for understanding particle filters we now introduce the sequential
update to the so-called smoothing density p(zo:¢|yo:¢), a much more
complex quantity because of the sequentially growing size of the
vector xo.;. The prediction-correction steps are however simpler to
obtain as:

p(zo:t|yo:e—1) = f@e|xe—1)p(To:e—1|yo:e—1) 4)

Z0:¢|Yo:t— x
p(zoulyon) = p(zo:t|yo:t—1)g(ye|z:) )
P(Yelyo:t—1)
since they do not involve an integration, and we will find it helpful

to make use of this version later.

3.2. Monte Carlo Methods

Now we have the basic schemes and ‘in principle’ methods for solv-
ing general filtering problems. However, for most applied scenarios
the linear Gaussian assumptions of the Kalman filter are not realistic
and numerical procedures must be employed.

In this section we outline three key developments during this
period that led to all the right tools being available for a particle filter:
the basic Monte Carlo (MC) method, the importance sampling (IS)
method, and the sampling-importance-resampling (SIR) method.

Monte Carlo methods originated in the physics community,
with scientists such as Enrico Fermi experimenting in the 1930s
and then others during the 1940s and 50s such as von Neuman,
Ulam and Metropolis. The basic Monte Carlo method attempts
to calculate expectations with respect to intractable probability
densities. Suppose we wish to calculate the expectation ¢(z) =
El¢(z)] = [ é(z)p(z)dx where p(z) is the probability density
function in question and ¢(z) is some measurable function. Basic
Monte Carlo simply generates a large number of independent sam-
ples z® ~ p(x), i = 1,...,I and uses these to approximate the
expectation. Here it is useful to introduce the empirical approxi-
mation of p(x). If we have samples (¥ ~ p(z), i = 1, ..., 1 then
informally p(x) can be approximated as:

I
> 6,0 (@)
=1

where 0_,(;) (x) is the Dirac function, i.e. an atom with unity volume
at & = V. Of course this summation does not really approximate
the value of the density function in any meaningful way. However,
it does approximate expectations wrt measurable functions since the
resulting expectation

o)~ [ ota) (} > (az)) dr =13 o)

can be shown to be unbiased and reducing in variance as 1/1. Al-
though this is a slow rate of convergence, it does show that the
method has good properties for large /.

The basic Monte Carlo scheme does not however solve the
sequential updating problem required for Bayesian updating. The
next step in developing a particle filter is the importance sam-
pling step. Importance sampling was invented certainly by the
early 1950s by Kahn and Harris [14], although they imply it
was already known to statisticians in their writings. Suppose

p(z) ~

~l =
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now that we cannot generate from p(x) itself, but rather we can
generate from another density function g(x) which may be more
tractable. Monte Carlo samples from ¢() now yield the approxima-
tion ¢(z) ~ 7 S~ !, 8, (x), and the expectation may be rewritten
as [¢(z)p(z)dz = [¢(z 5Ei;q( )dz, leading to the modified
importance sampling estimate:

p(z) ! I o(z® .
/d’ (@) ( ;%«»(@) dr = %Z ggx(i)gfﬁ(m(l))

where w(z) = Z () is known as the importance weight.

This method was widely used over the decades for sampling of
rare events in physics and communications systems. In Bayesian
statistics it was popularised in the late 1980s by John Geweke [15]
as part of the computational revolution in Bayesian methods. Now,
to see how to carry out Bayesian updating with importance sampling,
take g() to be the prior distribution, p(x), in Bayes’ Theorem Eq. (1).
The target distribution p() will be the posterior density p(x|y). If we
generate many samples from the prior p(z) the importance weight
will be, from Eq. (1):

p(ylz)p(z)

w(z) = plzly) _ v _ plylz)

p(z) p(z) p(y)
One extra item required for many Bayesian updating problems is that
we are often unable to compute exactly the term p(y), the rotal, or
marginal probability of y. It turns out that we can approximate this
also by Importance sampling using the same collection of samples
from p(x):

ply) = /(ylw %Z (yl="”

and the resulting empirical approximation o f he posterior density is

(%)
oz Fon @ = p(ylz*)
"= Z ol Sio (sl
where w*) is the so-called self-normalised importance weight.

One final step was required to have in place everything required
for the particle filter. This final item is the resampling step, and
this was proposed in the Bayesian setting by Donald Rubin [16]
and popularised by Adrian Smith [17]. We can now take the self-
normalised importance weights w and use them to resample I sam-
ples with replacement from the original sample set {x“)}, which
we will now refer to as particles. The weights disappear, or more
correctly, are all set equal to 1/7. The resulting algorithm is the
Sampling-Importance-Resampling (SIR) procedure, and it was one
of the enablers of the practical implementation of the particle filter.

It can be argued that SIR is a retrograde step from updating using
a weighted IS representation without resampling, since it introduces
an extra step of randomness which will make the Monte Carlo (finite
I) error larger on average. However, it proves to be a key element
when IS is repeatedly applied, for example in the multiple sequential
time update steps of the particle filter.

Now, placing the SIR algorithm within the setting of a state-
space model, we finally have all the required ingredients to reach
1993 and present the bootstrap filter...

4. 1993-2018: THE FIRST 25 YEARS

Bootstrap Filter [1]. In order to apply SIR to the sequential
state space setting we take the prediction step as the proposal dis-
tribution ¢(), and the corection step is then implemented with SIR.

Conceptually the simplest way to see this is through the joint predic-
tion/correction step, Eq. (4)-(5). The prediction step is implemented
as a joint random draw from the prediction density Eq. (4). The key
innovation here is that, just like the Kalman filter, we will assume
that the problem has been solved up to time ¢ — 1, which in a Monte
Carlo scheme means that we have a weighted set of Monte Carlo

samples {ac(()’lfl} drawn from the smoothing density up to time £ —1:

I
p(xO:t—l‘yO:t 1 Z Q xO:t—l) 6)

We can easily make a random draw from this discrete distribution
by choosing one of the stored sequences xéle with probability
wiz)l I independent random draws from the same discrete distri-
bution correspond to a random sample of size I with replacement
from the population of particles {xéfi_l} (the ‘resampling’ step -
note that this happens first rather than last in this presentation) - call
these the resampled sequences {xo +_1}- The reason why this step
is important in the sequential setting is that it tends to replicate high-
weighted sequences many times and to under-represent very low
weighted samples. Hence we will tend not to waste computation
updating paths that have very low chance of success, while we ex-
pend most of our computational effort on high-weighted sequences.
The prediction step is completed by making a random sample from
the term " ~ f(z|7",

55(()] 2 ;. Taken together, the resampled sequences and extended state
values :c( ) = [y @ ~(21 1] form a Monte Carlo approximation of
the predlctlon den51ty required in Eq. (4):

) for each of the resampled sequences

I
1
p(wo t|y0t 1 YZ :Cot

The approximation arises because we are only taking a finite number
of samples I to make the representation. This is now treated as the
proposal distribution to an importance sampler with target distribu-
tion p(zo:¢|yo:+). The IS weight is, by Eq. (5):

g(ytlze)
p(yelyo:t—1)

_ p(zoulyor)
.= -

p(zo:t|yo:t—1)

and, since p(y¢|yo:+—1) is constant but unknown in general, we take
the self-normalised version of IS to get:

$0t|y0t Z z ) iEOt)

where @) = _oeln®) )(g) .

> 9(yelzy)
now at times ¢t + 1, ¢ + 2, ... making a direct Monte Carlo ana-
logue of the Kalman filtering equations. This method is precisely
the bootstrap filter of Gordon, Salmond and Smith [1]. Just as with
the Kalman filter, its origins are quite complex and we should cite
at least the near contemporary developments by Genshiro Kitagawa
[18]. There are also similar algorithms proposed in the physics liter-
ature from earlier years. It is worth noting that some sequential IS al-
gorithms without the crucial resampling step appeared in the control
literature from the late 60s, see [19, 20]. The bootstrap algorithm has
shown great success in solving hard nonlinear/ non-Gaussian prob-
lems from many application domains. However, it is limited in a
number of ways, and we now give a whistle-stop tour of some of the
developments from 1993 to now.

The same procedure can be iterated
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Revisiting the update. First let us return to the joint prediction-
correction updates Eq. (4)-(5). Some insights can be gained from
writing these as a single equation and substituting the approximation
from Eq. (6), which leads after a little rearrangement to:

Sico Faela? Dyl w6, (zoe1)

P(ye|yot—1)

p(o:t|yo:t) =

Q)

This equation now leads to many of the important variants we have

seen developing over recent years. The first observation is that this

updated joint distribution is a combination of a discrete distribution

over past sequences xo:¢—1 taking possible values only in the set
{z{)_,}, and a conditional distribution for z;, as follows:

~ (1) (1) (1)
(%) Wy q ff(xt‘xtfl)g(yt‘xt )dzx,
Pr(xo.t—1 = xn.;_ $) =
( 0:t—1 0:t 1‘2/0 t) p(yt|y0:t71)
®
p(ze|Tose—1,yo:t) = F@ilze-1)g(yelze) 9)

p(ye|we—1)

This means that we have a target distribution over the entire sequence
2o:+ which may be sampled using IS with an essentially arbitrary
discrete proposal function for x¢.c—1, say:

1
Q(xo:t—1|y0:t) = Zvi?léz(i) (xo;t_l), ’Ugi)l >0,
. — 0:t—1

where vii)l (satisfyliE% > vﬁi)l = 1) are carefully chosen
proposal weights; and a conditional proposal for a new state x,
q(x¢|T0:t—1, yo:¢), noting that both proposals can be designed to
depend on the entire available data, yo.: in this case. The self-
normalised importance weights for this general framework are then

By o DL f($t|$t—1)9(yt|$t)7 ngz) _q
vi—1  q(zt|xo:t—1,Yo:t)

Setting vi—1 = W¢—1 and ¢(¢|To:t—1, Yo:t) = f(xe|Te—1) gets us
precisely back to the bootstrap filter.

General Importance Sampling Filter [3, 21]. However, al-
ternative choices are possible for both elements of the proposal and
can lead to substantial improvements compared to the ‘vanilla’ boot-
strap version. Setting v;—1 = w¢—1 but choosing q¢(x¢|To:t—1, Yo:t)
in some other carefully chosen way leads to the general impor-
tance sampling framework. In the ‘optimal’ case we can set
q(z¢|To:t—1, yo:t) = p(x¢|To:t—1, Yo:+) and then the weights do not
depend on the value of z; at all: Wy o< p(y¢|zi—1), D, wﬁ” =1.

While such a choice has good properties, it is used practically
more as a guide to design parameters, since it is rarely possible both
to sample z in this way and compute the required weight.

Auxiliary Particle Filter (APF) [22]. Meanwhile, choosing
alternative forms for q(xo:t—1|yo:¢) leads to the class of methods
known as Auxiliary Particle Filtering. In particular it is proposed
there to make the proposal weights v;_1 depend upon the new ob-
servation y;. In the so-called ‘fully adapted’ case of the APF, v:_1
is chosen proportional to w:—1p(y¢|zi—1) and q(x¢|To:t—1, Yo:t) =
p(xt|To:t—1,Yo:t) (as in the ‘optimal’ proposal), which leads to a
uniformly weighted sample set with w; = 1/I. Again, this ‘ideal’
case is only usually possible as a guide for more practical proposal
designs. See [23] for further discussion of these approaches.

Sequential MCMC. The general update equation (7) allows
for additional insights and further methods. One which is of current
interest for challenging scenarios takes the Monte Carlo update Eq.

(7) and applies a different style of Monte Carlo. The Gibbs sam-
pling MCMC framework allows the problem to be split into smaller
individual conditional sampling steps, with convergence to the joint
target after many such steps, see [24, 25]. A simple way to split the
conditionals is as follows:

I
p(xo:i-1|yo:e we) o Y flaelwf?)if 8 o) (z04-1) (10)
0:t—1

1=0

which again involves drawing from a simple discrete distribution
with probability masses proportional to f(z; |x§i)1)u~1§?1, and a
conditional sampling step for the new state exactly as in Eq. (9).
This latter step will typically be split into several sub-conditionals,
and implemented using Metropolis-Hastings (MH) where necessary.
Typically an additional joint MH sampling mechanism targetting (7)
directly is included to aid mobility of the sampler around the state-
space. These methods have appeared in various guises since the late
90s [26, 22, 27, 28, 29] and are one of the promising directions for
challenging scenarios currently being investigated.

Particle Smoothing [30]. It turns out that the conditional dis-
tribution also facilitates a backward smoothing procedure: first draw
a sample randomly from the discrete particle filtering representation
of p(zo:¢|yo:+) and keep just the last time point z, then repeateadly
draw from the conditional density Eq. (10) fromt—1,¢—2, ... 0. The
set of random samples returns an improved sequence random draw
from the entire smoothing density p(xo:¢|yo:¢), as compared with the
initial draw. See also the related marginal smoothing methods given
by [3, 2].

Other Developments and the Future. There have been many
important developments to the methods over the years and here we
can only name a few. We stick with inference for dynamical mod-
els, but we note that Sequential Monte Carlo methods have been
developed for much more general applications including static pa-
rameter estimation and as a replacement for other, typically MCMC-
based methods in batch scenarios, see especially the SMC Sampler
work of [31]. A fundamental advance that occurred fairly early was
the Rao-Blackwellised particle filter[3, 32], in which the power and
simplicity of the Kalman filter is used to compute any linear/ Gaus-
sian component of the state-space model, while the particle filter
is used to compute the remaining non-Gaussian/ nonlinear compo-
nents. An advance which proved particularly successful was the
addition of MCMC steps to a standard IS-based particle filter, see
the Resample-Move approach of [33], not to be confused with the
Sequential MCMC approaches described above. The intuitive idea
there is that any sampled sequence x((fz from a particle filter is nom-
inally drawn from the correct distribution p(xo:¢|yo:+) (subject to the
finite sample-size error). Any MCMC kernel targetting p(2o:¢|yo:¢)
can be applied to this sampled sequence without changing that distri-
bution, and in fact a suitable kernel will both move particles closer to
the true posterior density, and also increase diversity amongst differ-
ent particles to which MCMC is applied. A more recent development
that has sparked a new field of research in its own right is the Particle
MCMC approach of [34]. Again, not to be confused with Sequential
MCMC or Resample-Move schemes above, Particle MCMC embeds
particle filters within (typically) intractable MCMC methods, and a
remarkable result is proven that shows the resulting samplers are still
precisely valid as MCMC procedures. Finally we note that effort is
being made to parallelise and to extend particle filters to much larger
state spaces, and in recent years more heuristic approaches that split
the state-space into smaller chunks have some validity in terms of
their approximation errors, see e.g. [35].
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