
RELATIONSHIPS BETWEEN DEEP LEARNING AND LINEAR ADAPTIVE SYSTEMS

Scott C. Douglas

Southern Methodist University
Dept. of Electrical and Computer Engineering

Dallas, Texas 75275 USA
sdouglas@smu.edu

Eric C. Larson

Southern Methodist University
Dept. of Computer Science
Dallas, Texas 75275 USA
eclarson@smu.edu

ABSTRACT

Linear adaptive systems are a well-known staple in numerous
signal processing applications. Recently, significant activ-
ity and performance gains have been achieved in multilayer
neural networks for deep learning applied to practical data
processing applications. In this paper, we describe the im-
portant relationships and significant differences between the
procedures and methods used in linear adaptive systems and
those used in multilayer neural networks for deep learning
tasks. Input-output structures, cost functions and training cri-
teria, adaptive algorithms, and data processing and optimiza-
tion strategies are considered. It is the hope of the authors
that this discussion will spur further crossover between the
two fields, and in particular allow knowledge to be shared and
further progress to be made.

Index Terms— adaptive signal processing, adaptive sys-
tems, deep learning, machine learning, neural networks.

1. INTRODUCTION

Deep learning systems for data classification and regression
have seen an explosion of activity in recent years. Many re-
searchers and system designers have leveraged (a) large data
corpuses collected and made available on the internet, (b) the
availability of software frameworks for implementing deep
learning systems, (c) fast computational resources within par-
allel hardware such as graphical processing units (GPUs), and
(d) access to preconfigured software and hardware through
cloud computing. These systems classify images, recognize
spoken commands, identify patterns or trends, fill in or re-
place missing and/or erroneous measurements – the list of
applications grows longer each day. As a result, there is a
tremendous need within the entire technical community im-
plementing deep learning systems to understand the technol-
ogy so that it can be successfully tuned.

It may seem surprising, but the underpinnings of today’s
deep learning systems began to be extensively explored about
70 years ago [2, 15, 16] and the basic methodologies in
use today were well-articulated over 30 years ago [18, 19].
Moreover, the adaptive algorithms and methods that spurred
the development of multilayer neural networks also created
the field of linear adaptive systems, becoming a technology

staple in numerous signal processing applications with well-
articulated design rules and performance metrics developed
over the same period [3]–[14]. The goal of this paper is to de-
scribe the important relationships and significant differences
between research and practice in linear adaptive systems and
that in multilayer neural networks in use for deep learning
tasks. It is the hope of the authors that this discussion will
spur crossover between the two fields as well as between the
corresponding computer science and electrical engineering
communities, and in particular allow knowledge to be shared
and further progress to be made in modern data processing
systems.

This paper is organized into four sections addressing the
following issues: input-output structures, cost functions and
training criteria, adaptive algorithms, and data processing and
optimization strategies. References are organized by date of
first edition appearance and by technical area.

2. INPUT-OUTPUT STRUCTURES

Both deep learning systems and linear adaptive systems pro-
cess measurements or information to predict a desired result.
In linear adaptive systems, the processing structure is by def-
inition a linear structure and is most often a weighted combi-
nation of L input signal samples {xi(n)} of the form

d̂(n, k) =

L∑
i=1

wi(k)xi(n), (1)

where wi(k) are the L weights of the adaptive system at iter-
ation k and d̂(n, k) is the system’s output for input pattern n
and weight iteration k. For systems with multiple outputs, the
input-output relation can be compactly expressed in matrix
form as

d̂(n, k) = W(k)x(n). (2)

Traditionally, linear adaptive systems have been trained using
algorithms that employ the current input signal pattern x(n)
in the updates, allowing k = n to be used and thus simplifying
the notation to d̂(n, n) = d̂(n). In the discussions that follow,
we will also refer to the linear system output as y(n, k) =

d̂(n, k) to allow a common notation.

7755978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

It is possible to have different processing structures than
those shown above in linear adaptive systems, particularly if
the samples in x(n) are regularly indexed by position and/or
time as in a recorded sound, image, or video. Probably the
most important set of structures is the use of fast convolu-
tion methods involving the fast Fourier transform (FFT) and
frequency-selective filters employing subband processing [9],
and adaptive algorithms for such structures have seen signif-
icant development for audio applications in particular. An-
other important class of systems in this space are those in-
volving recursive structures, also known as adaptive infinite
impulse response (IIR) filters [7], where the number of pa-
rameters can typically be reduced for a given modeling ca-
pability, although these structures often require monitoring of
their parameters in order to maintain input-output stability.

In deep learning, processing architectures are comprised
of layered systems in which the m layer’s output ym(n, k)
has the general form

ym(n, k) = fm(Wm(k)xm(n, k) + bm(k)) (3)

where the matrix Wm(k) and the vector bm(k) contain ad-
justible parameters and fm(d̂) is a vector-valued nonlinear-
ity acting on the elements of its argument. The use of bias
weights in bm(k) is a notable difference from the linear adap-
tive case; signals that are zero on average are common in lin-
ear systems and do not require the modelling of signal offsets.
An M -layer structure is created by setting

x1(n, k) = x(n) (4)
xm+1(n, k) = ym(n, k) (5)

y(n, k) = yM (n, k). (6)

Almost everything about this structure is open to design,
including the number of layersM , the number of output chan-
nels at each layer specifying the size of ym(n, k), and the
choice of nonlinearities in fm(d̂) at each layer. Most no-
tably, however, the structure of Wm(k) is also open to design
through the mechanisms of

• weight sharing, in which multiple rows of Wm(k) con-
tain the same weight values at different positions, and

• sparsity, in which most of the entries of Wm(k) are
chosen to be zero.

These two mechanisms are typically leveraged in deep learn-
ing systems to create systems that perform one- or two-
dimensional convolution operations on time-series data [25]
or images [20], respectively, as well as reduce the number of
outputs at a given layer through sub-sampling, a process that
is called pooling. Even these pooling mechanisms are open
to design, as they can be data-dependent; the most common
ones currently in use involve maximization (max pooling)
[22], mean calculation (average pooling), L2-norm evaluation
(L2-pooling), and simple decimation which when combined

with convolution is sometimes called stride convolution in
the deep learning community.

3. COST FUNCTIONS AND TRAINING CRITERIA

Given an input-output structure, both linear adaptive sys-
tems and deep neural networks employ cost functions in
order to update their adaptive parameters. A cost func-
tion J(k) is a scalar-valued function of the parameters in
W(k) or {Wm(k),bm(k)} and the signal pattern pairs
{x(n),y(n)} that, when minimized, achieves an overall de-
sirable result regarding the input-output pairs {x(n),y(n, k)}
for 1 ≤ n ≤ N .

The choice of cost function is driven by the overall goal of
the system. In continuous-valued estimation or regression, the
goal is to estimate y(n) using y(n, k) so that the two are close
to each other in some sense. Thus, criteria based on distances
between y(n) and y(n, k) are often used. The most-often-
used cost function in this regard is the sum-of-squared-errors
cost function given by

JSE(k) =
1

N

N∑
n=1

||e(n, k)||2 (7)

=
1

N

N∑
n=1

Lo∑
i=1

(yi(n)− yi(n, k))2 (8)

where || · ||2 denotes the Euclidean distance and e(n, k) =
y(n) − y(n, k) are errors at the outputs of the system for an
Lo-output system. The sum-of-squared-errors cost function
is popular in both linear adaptive systems and deep learning
because (a) it is simple to compute, (b) it is generally well-
behaved in parameter space, and (c) training results can often
be easily interpreted or judged. In linear adaptive systems, the
choice is further motivated by two additional properties: (1)
The cost function is both convex and unimodal in the parame-
ters in W(k), such that it is easily optimized. (2) The gradient
of the cost function is linear in the parameters in W(k), and
thus analysis of the adaptive system’s behavior based on this
cost function is greatly simplified. Non-squared-error-based
criteria are possible but are generally only beneficial when the
training signals in y(n) have deviations from a linear model
that can be characterized, such as by their statistical distri-
bution [10]. The sum-of-squared-errors cost is often chosen
in deep learning tasks for regression as well, although both
convexity and unmodality are typically lost due to the nonlin-
earities in fm(d̂) and the layered input-output structure.

Much of the current work in deep learning focuses on
classification, in which the goal is to identify a discrete cat-
egory or class associated with the input signal patterns x(n).
Typically, this leads to a structured desired pattern y(n) that
is also discrete-valued, and the choice

yi(n) =

{
1 if x(n) corresponds to class i
0 otherwise. (9)

7756

is common. Classification tasks typically are interpreted
within a probabilistic framework and fall within the well-
studied field of statistical pattern recognition [17]. In such a
framework, the outputs in y(n, k) of a deep neural network
are often interpreted as probabilities, driving the choices of
both the nonlinearities in the output layer fM (d̂) and the cri-
terion J(k) for training. A common choice for both yields
the cross-entropy loss

J(k) = − 1

N

N∑
n=1

Lo∑
i=1

yi(n) log yi(n, k) (10)

y(n, k) = fM (d̂M (n, k)) (11)

where fM (d̂) is the softmax output function with entries [22]

fiM (d̂) =
exp(d̂i)

Lo∑
j=1

exp(d̂j)

. (12)

By contrast, linear adaptive systems for classification
tasks are much more constrained in their modeling abilities
due to their linear input-output structures. Such systems often
use simple decision nonlinearities such as quantizers at their
system output so that the linear nature of their structure can be
easily observed in the signal d̂i(n, k) prior to the decision el-
ement. The field of adaptive equalization and adaptive array
processing in digital communications is concerned with these
methods, where signals and adaptive parameters are assumed
to be complex-valued due to the frequency-domain process-
ing involved. The criteria often employed in such systems
are related to the sum-of-squared-errors cost in (8), however,
again due to the benefits in performance characterization and
system tuning that such choices provide.

While not a focus of this paper, unsupervised criteria for
training both linear adaptive systems and deep neural net-
works have been studied, where only the input patterns x(n)
are available for training. In deep learning, the most com-
mon choice for this occurs in the problem of autoencoding,
in which the goal is to set y(n) = x(n) and train the system
to approximate the input pattern at its output. Such training
makes sense when the deep neural network has one or more
low-dimensional intermediate outputs ym(n, k), and has been
used in a pretraining process for adjusting parameters prior to
signal modeling of the pair {x(n),y(n)}. In linear adaptive
systems, similar methods form the bases of principal compo-
nent analysis [11] and independent component analysis [12],
which form the underlying basis of applications such as sub-
space tracking and blind source separation, respectively.

4. ADAPTIVE ALGORITHMS

Given an input-output structure and a cost function J(k), an
adaptive algorithm is used to adjust the parameters W(k) or

{Wm(k),bm(k)} so that the value of J(k) is minimized. For
both linear adaptive systems and deep neural networks, by
far the most popular algorithm choice is gradient descent, in
which each parameter is adjusted according to the negative
derivative of the cost with respect to the parameter, or

wij(k + 1) = wij(k)− η(k)
∂J(k)

∂wij(k)
(13)

for the entries of W(k) (the adjustments for Wm(k) and
bm(k) are similarly-described), where η(k) is the step size at
iteration k. Widrow and Hoff are credited for discovering this
algorithm in modern signal processing contexts [2], where it
is referred to as the least-mean-square (LMS) algorithm. The
extension of this method for training multilayer neural net-
works is credited to Werbos [18], although it was popular-
ized over a decade later by Rumelhart, Hinton, and Williams
through their well-known book chapter [19] as the backprop-
agation algorithm. The notation in [19] is still widely-used
today to describe the approach.

In both cases, the adjustments amount to accumulating
terms that correspond to the products of error terms and input
signal terms, where both of these terms are defined relative to
the parameters being adjusted. For the linear case, the LMS
algorithm is

W(k + 1) = W(k) + η(k)
1

N

N∑
n=1

e(n, k)xT (n).(14)

The algorithm would potentially “stop” when the condition
∂J(k)∂wij(k) = 0, corresponding to a perfectly-flat point in
the multidimensional error surface defined by the cost J(k),
although in practice the algorithm will continue adjustment
forever without any other intervention. Such an approach
is well-founded from the standpoint of estimation theory, in
which error and input signal decorrelation (orthogonalization)
is a provable condition for identification of an optimum set of
parameters, often referred to as the Wiener solution in defer-
ence to the pioneering work in [1].

It is important to note that, while simple to describe and
implement, gradient descent is a heuristic search procedure,
and better performance may be achievable through either
modifications of the gradient descent algorithm, or an alter-
native approach altogether. In linear adaptive systems, an
alternative class of methods that directly minimize JSE(k)
at each iteration can be recursively-implemented, leading to
extremely-fast convergence in many cases. Such recursive
least-squares (RLS) procedures make use of system linear-
ity and, in some cases, the shift-input structure of the input
signal pattern x(n), to reduce the computational load. Some
of these techniques employ carefully-crafted linear algebraic
relations that test the limits of numerical accuracy and system
stability, requiring clever feedback mechanisms to stabilize
[8]. An accessible listing of many of these algorithms, along

7757

with their associated references, can be found in [13]. Un-
fortunately, many of these RLS procedures do not directly
apply to nonlinear input-output structures nor to the process-
ing of non-convolutive models; and thus their applicability to
deep learning is likely limited. Thus, it is often the case that
modifications to the LMS algorithm prove the best choice for
linear adaptive system design. The most popular modified
method is the normalized LMS (NLMS) algorithm, which is
stable for a fixed range of step sizes η(k) – very convenient
for system tuning [4, 5, 6, 14].

In deep learning, the sheer number of weights in such sys-
tems – many modern-day DNNs have millions of parameters
– means computational complexity of any adaptive algorithm
is a critical issue. As such, modifications of gradient descent
are a common choice for system implementations, largely due
to issues of computational simplicity. The nonlinear nature
of the layered structures within DNNs means, however, that
even well-behaved cost functions such as JSE(k) are non-
convex in parameter space, and the design of any modifica-
tions of gradient descent are closely-tied to other issues in
system implementation. Perhaps the most important recent
developments in training algorithms within DNNs are

1. batch normalization, a strategy for adjusting the input
patterns within the processing structure to normalize
signal variances and reduce signal mean values [29],

2. dropout, a system-averaging technique whereby a frac-
tion of nodes are randomly removed within training, re-
sulting in networks with better generalization capabili-
ties [27], and

3. weight initialization strategies that address overall sys-
tem gain issues for improved training [24, 30].

5. DATA PROCESSING AND OPTIMIZATION
STRATEGIES

Given an input-output structure, a chosen cost function, and
an adaptive algorithm, the final task is to process the data
in {x(n),y(n)} to obtain the parameters that produce rele-
vant outputs y(n, k). In this case, the overall methodologies
in linear adaptive systems and deep learning methods are of-
ten different due to different goals and outcomes. Moreover,
the mechanisms used to optimize the overall performance of
the system via exploration of parameter changes, structural
changes, and data processing changes are also different.

Most linear adaptive systems function in an online set-
ting, where new measurements {x(n),y(n)} for additional
training are constantly being created. Thus, the goal is to set
up a system that continually improves its ability to model the
input-output relationship over time. Thus, system parameters
such as the number of parameters in the model and the choice
of step size sequence η(k) are designed to balance a multitude
of factors including initial convergence speed, final estimation
accuracy or amount of misadjustment in the system’s output,
and tracking behavior in time-varying signal conditions. Note

that the goal for the system may not be to recover an accurate
value y(n, k). For example, in adaptive noise canceling [3],
the error signal e(n, k) = y(n) − y(n, k) is the quantity of
interest, because x(n) is correlated to undesirable signals that
are contained in y(n) that are to be cancelled out. Mech-
anisms for efficient computation via block-based operations
can be used but generally do not impact performance signif-
icantly. Weight initialization is typically not critical. More-
over, a system is typically designed to perform well in a range
of measurement scenarios, using data that is collected at the
time the system is put into service – and when the system is
turned off, the parameter values are often discarded.

In contrast, neural networks for deep learning are typi-
cally implemented in a two-phase process. In the training
phase where {x(n),y(n)} pairs are available, the values of
{Wm(k),bm(k)} are adjusted to a desired cost function per-
formance, at which point the parameters are “frozen.” In the
evaluation phase, these trained parameters are used without
alteration to compute new outputs y(n, k) given input pat-
terns x(n) for which no training pattern y(n) is available.
Thus, there is great value in both the parameters computed
during training and the architecture used to compute the sys-
tem outputs. In this context, the goal is to achieve not only
good training performance, but also a performance in the eval-
uation phase that is as close as possible to that observed in the
training phase. The term generalization describes this ability
of a neural network to produce useful outputs for new input
patterns, and it is a requirement for success [17].

The choice of architecture (numbers of layers, nonlinear-
ities, weight sharing and so on) [28, 31], the use of mecha-
nisms for efficient computation such as small training block
sizes (“mini-batch”), and the setting of parameters such as the
initial weight values [24, 30] and the step size sequence η(k)
all affect this performance translation from training to evalu-
ation in deep neural networks and need to be carefully tuned.
When combined, these considerations typically lead to an it-
erative approach whereby the training data is partitioned into
an NT -sample training set and an NV -sample validation set,
where NT + NV = N . After the system is trained on the
training set, performance is evaluated on the validation set
to ensure that a sufficient level of performance is achieved.
Then, system parameters are adjusted iteratively to improve
overall system performance on the validation set through re-
peated training runs. Thus, overall system design in deep
learning becomes iterative, where changes are typically eval-
uated numerically in various combinations. The sheer num-
ber of possible outcomes leads to significant use of compu-
tational resources, and achieving good performance requires
good strategies combined with both insight and patience. Ex-
perience plays a critical role, and knowledge development and
aggregation has been a focus within the field for some time
[23]. General design rules in deep learning are challenging to
obtain, although there has been recent theoretical progress on
bounding the overall performance of such techniques [32].

7758

6. REFERENCES

[1] N. Wiener, Extrapolation, Interpolation, and Smooth-
ing of Stationary Time Series, with Engineering Appli-
cations (New York: Wiley, 1949).

Linear Adaptive Systems:

[2] B. Widrow and M. Hoff, Jr., “Adaptive switching cir-
cuits,” IRE WESCON Convention Record, pt. 4, pp. 96-
104, 1960.

[3] B. Widrow, et al, “Adaptive noise cancelling: Principles
and applications,” Proc. IEEE, vol. 63, no. 12, pp. 1692-
1716, Dec. 1975.

[4] B. Widrow and S.D. Stearns, Adaptive Signal Process-
ing (Englewood Cliffs, NJ: Prentice-Hall, 1986).

[5] J. R. Treichler, C.R. Johnson, Jr., and M.G. Larimore,
Theory and Design of Adaptive Filters, 2nd ed. (Upper
Saddle River, NJ: Prentice-Hall, 2001).

[6] S. Haykin, Adaptive Filter Theory, 5th ed. (Upper Sad-
dle River, NJ: Pearson, 2014).

[7] J.J. Shynk, “Adaptive IIR filtering,” IEEE ASSP Mag.,
vol. 6, no. 2, pp. 4-21, April 1989.

[8] D.T.M. Slock and T. Kailath, “Numerically stable fast
transversal filters for recursive least squares adaptive fil-
tering,” IEEE Trans. Signal Processing, vol. 38, no. 1,
pp. 92-114, Jan. 1991.

[9] J.J. Shynk, “Frequency-domain and multirate adaptive
filtering,” IEEE Signal Processing Mag., vol. 9, no. 1,
pp. 14-37, Jan. 1992.

[10] S.C. Douglas and T.H.-Y. Meng, “Stochastic gradient
adaptation under general error criteria,” IEEE Trans.
Signal Processing, vol. 42, no. 6, pp. 1335-1351, June
1994.

[11] K.I. Diamantaras and S.-Y. Kung, Principal Component
Neural Networks: Theory and Applications (New York:
Wiley, 1996).

[12] A. Hyvärinen, J. Karhunen, and E. Oja, Independent
Component Analysis (New York: Wiley, 2002).

[13] S.C. Douglas and R. Losada, “Adaptive filters in MAT-
LAB: From novice to expert,” Proc. 2nd. Signal Pro-
cessing Education Workshop, Callaway Gardens, GA,
paper 4.9, Oct. 2002.

[14] A.H. Sayed, Fundamentals of Adaptive Filtering (Hobo-
ken, NJ: Wiley, 2003).

[15] D.E. Hebb, The Organization of Behavior: A Neuropsy-
chological Theory (New York: Wiley, 1949).

Neural Networks and Deep Learning:

[16] F. Rosenblatt, “The perceptron: A probabilistic model
for information storage and organization in the brain,”
Psychological Review, vol. 65, no. 6, pp. 386-408, Nov.
1958.

[17] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classifi-
cation, 2nd ed. (New York: Wiley, 2001).

[18] P.J. Werbos, “Beyond regression: New tools for predic-
tion and analysis in the behavioral sciences,” Ph.D. the-
sis, Harvard University, 1974.

[19] D.E. Rumelhart, G.E. Hinton, and R.J. Williams,
“Learning internal representations by error backprop-
agation,” in Parallel Distributed Processing, Vol. 1:
Foundations, D.E. Rumelhart and J.L. McClelland, eds.
(Cambridge, MA: Bradford Books, 1986), pp. 318-362.

[20] Y. LeCun, et al, “Handwritten digit recognition with a
back-propagation network,” Proc. Advances in Neural
Information Processing Syst. 2 (NIPS 1989), Denver,
CO, pp. 396-404, Nov. 1989.

[21] S. Haykin, Neural Networks and Learning Machines,
3rd. ed (Upper Saddle River, NJ: Pearson, 2009).

[22] M. Riesenhuber and T. Poggio, “Hierarchical models of
object recognition in the cortex,” Nature Neuroscience,
vol. 2, pp. 1019-1025, Nov. 1999.

[23] P.Y. Simard, D. Steinkraus, and J.C. Platt, “Best prac-
tices for convolutional neural networks applied to vi-
sual document analysis,” Proc. 7th Int. Conf. Document
Analysis and Recognition, vol. 2, pp. 958-963, Aug.
2003.

[24] X. Glorot and Y. Bengio, “Understanding the difficulty
of training deep feedforward neural networks,” Proc.
Machine Learning Research, vol. 9, pp. 249-256, May
2010.

[25] G.E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-
dependent pre-trained deep neural networks for large-
vocabulary speech recognition,” IEEE Trans. Audio,
Speech, Language Processing, vol. 20, no. 1, pp. 30-42,
Jan. 2012.

[26] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Ima-
geNet classification with deep convolutional neural net-
works,” Proc. 25th Int. Conf. Neural Information Pro-
cessing Systems, vol. 1, pp. 1097-1105, Dec. 2012.

[27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Slakahutdinov, “Dropout: A simple way to pre-
vent neural network over fitting,” J. Machine Learning
Research, vol. 15, pp. 1929-1958, June 2014.

[28] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
Proc. 2015 Int. Conf. on Learning Representations, San
Diego, CA, arXiv:1409.1556, 14 pp., May 2015.

[29] S. Ioffe and C. Szegedy, “Batch normalization: Acceler-
ating deep network training by reducing internal covari-
ate shift,” Proc. Machine Learning Research, vol. 37,
pp. 448-456, July 2015.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifiers: Surpassing human-level performance on Im-
ageNet classification,” Proc. 2015 Int. Conf. Computer
Vision, pp. 1026-1034, Dec. 2015.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” Proc. 29th IEEE Conf.
Computer Vision and Pattern Recog., pp. 770-778, June
2016.

[32] M. Hardt, B. Recht, and Y. Singer, “Train faster, gen-
eralize better: Stability of stochastic gradient descent,”
Proc. Machine Learning Research, vol. 48, pp. 1225-
1234, June 2016.

7759

		2019-03-18T11:15:06-0500
	Preflight Ticket Signature

