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ABSTRACT
Complex least mean square (CLMS) based adaptive compu-
tation of discrete orthogonal transforms has been extensively
investigated in the literature. However, all of these results
provide only a means for the calculation of either forward
orthogonal transforms or their inverse orthogonal transforms,
separately. In this work, a way to simultaneously calculate the
discrete Fourier transform (DFT) and the inverse DFT (IDFT)
is established via the widely linear (WL) signal processing
framework. We show that by appropriately selecting the in-
put vector and adaptation speed of the widely linear complex
least mean square (WL-CLMS), the resulting spectrum ana-
lyzer is capable of simultaneously performing DFT and IDFT
of the signal to be Fourier analyzed in both the block-based
and online manners.

Index Terms— DFT, inverse DFT (IDFT), widely linear
CLMS, recursive DFT and IDFT spectrum analyzer

1. INTRODUCTION

It is well-known that the classic Fourier coefficients of a sig-
nal representation can be obtained by the best least squares
fitting of a finite number of sines and cosines. In this sense,
the mapping of a signal into its Fourier components can be
implemented recursively by virtue of the complex least mean
square (CLMS) adaptive filter. This is achieved by choosing
harmonic series with quadrature phase terms as the filter input
and the signal to be Fourier analyzed as the desired output.
This basic idea was first proposed by Widrow et al. in [1],
whereby both the block-based DFT and its recursive coun-
terpart were computed through a CLMS spectrum analyzer.
This made it possible to achieve online DFT computation in a
sliding window manner, that is, for streaming data. Based on
these findings, more research efforts in this direction include
a generalized LMS framework to compute other orthogonal
transforms like discrete Hartley transform [2], discrete Walsh
transform [3] and discrete cosine/sine analyzer [4], together
with their two-dimensional extensions [5–7]. All in all, the
CLMS algorithm provides an alternative way to perform var-
ious orthogonal transforms and its parallel and adaptive pro-
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cessing nature facilitates VLSI implementation and roundoff
error elimination in these orthogonal transforms [1, 8].

However, LMS-based spectrum analyzers only provide
a means for the separate calculation of forward orthogonal
transforms or their inverses [2–11]. This is a direct conse-
quence of a strictly linear estimation framework which is in-
herent to traditional adaptive filters in the complex domain,
where the second order circularity (properness) assumption
is imposed on both the desired and input signals [12]. The
signal properness refers to the situation where the real and
imaginary components of complex-valued random signals are
both uncorrelated and with equal powers, making complex-
valued random signals behave like real-valued ones in the
sense that their second order statistics is fully described by
the standard covariance matrix. This simplifies the complex-
valued statistical analysis in many aspects. However, recen-
t results in the so-called augmented complex statistics show
that in order to fully explore all the available second order in-
formation in general complex-valued signals, another second
order moment, called the complementary covariance matrix,
should also be taken into account, alongside the convention-
al covariance matrix, especially for improper data [13–16].
This has been achieved through the widely linear (WL) esti-
mation framework which incorporates both the original sig-
nals themselves and their complex conjugates [17]. A well-
known example in adaptive filter design is the development of
WL-CLMS, which has provided modelling advantages over
its strictly linear CLMS counterpart in numerous application-
s in signal processing, communications, power systems, and
renewable energy [18–22].

In this paper, intrinsic relations between the WL-CLMS
and both the DFT and IDFT operations are investigated. We
show that by appropriately selecting the input vector and
adaptation speed, the weight coefficients of the proposed
WL-CLMS spectrum analyzer provide a means for the simul-
taneous computation of DFT and IDFT of a complex-valued
signal. More specifically, N equally spaced complex phasors
and their complex conjugates are weighted by the WL-CLMS
to generate a reconstructed signal. These weight vectors are
then adapted to provide a best least squares fit between the
reconstructed signal and the signal to be analyzed. In this
way, the standard and conjugate weights within the augment-
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Fig. 1. The proposed WL-CLMS spectrum analyzer.

ed weight vector of the WL-CLMS correspond respectively
to the N -DFT and N -IDFT coefficients after N iterations.

2. BLOCK-BASED DFT AND IDFT COMPUTATION
BY USING THE WL-CLMS SPECTRUM ANALYZER

The block diagram of the proposed widely linear CLMS spec-
trum analyzer, used to calculate the N -DFT and N -IDFT op-
erations simultaneously, is shown in Fig. 1. The signal to
be Fourier analyzed, i.e., dk, refers to the desired output of
the adaptive filter at the time instant k. The input to the WL-
CLMS filter is the complex phasor vector, xk, and its complex
conjugate, x∗k, respectively given by

xk =
1√
N

[
1, ei2πk/N , . . . , ei2π(N−1)k/N

]T
, (1)

x∗k =
1√
N

[
1, e−i2πk/N , . . . , e−i2π(N−1)k/N

]T
, (2)

where (·)T denotes the transpose, (·)∗ denotes the com-
plex conjugate, and i =

√
−1. The scaling factor 1/

√
N

is introduced for convenience in DFT and IDFT calcu-
lations. Both the N × 1 conjugate weight vector gk =
[gk,1, gk,2, . . . , gk,N ]T and the N × 1 standard weight vector
hk = [hk,1, hk,2, . . . , hk,N ]T are updated in accordance with
the WL-CLMS as [14, 19, 20]

gk+1 = gk + µekxk, (3)
hk+1 = hk+µekx∗k, (4)

where µ ∈ R+ is the step-size and the error, ek, is defined as
ek = dk − xTk hk − xHk gk. (5)

Substituting (5) back into the weight update processes in (3)
and (4) yields

gk+1 = gk+µxk
(
dk−xTk hk−xHk gk

)
=
(
I−µxkxHk

)
gk−µxkxTk hk+µdkxk, (6)

hk+1 =
(
I−µx∗kxTk

)
hk−µx∗kxHk gk+µdkx∗k. (7)

By assuming that the weight vectors are initialized to be ze-
ros, i.e., g0 = h0 = 0, we next investigate the evolutions of

both gk and hk on a step-by-step basis. For simplicity, we dis-
cuss in detail the evolution of gk and directly state the corre-
sponding result for hk, which can be calculated analogously.
According to (6), we have

g1=
(
I−µx0xH0

)
g0−µx0xT0 h0+µd0x0=µd0x0. (8)

In the next stage,

g2 =
(
I−µx1xH1

)
g1−µx1xT1 h1+µd1x1

= µ (d0x0+d1x1)−µ2x1
(
xH1 x0 + xT1 x∗

0

)
d0, (9)

where the inner products xH1 x0 and xT1 x∗
0 can be evaluated as

xH1 x0=
1

N

N−1∑
l=0

e−i
2π
N l=0, xT1 x∗0=

1

N

N−1∑
l=0

ei
2π
N l=0. (10)

Then, equation (9) reduces to

g2=µ (d0x0 + d1x1) . (11)

In a similar way, from (7), we have

h1=µd0x∗
0, h2=µ (d0x∗0 + d1x∗

1) . (12)

Following the same procedure, for the time instant k,

gk=µ
k−1∑
l=0

dlxl, hk=µ
k−1∑
l=0

dlx∗l , k = 1, . . . , N, (13)

so that, when k=N , we have

gN=µ

N−1∑
l=0

dlxl

=
µ√
N

N−1∑
l=0

dl

[
1, ei2πl/N , . . . , ei2π(N−1)l/N

]T
=

µ√
N

[
N−1∑
l=0

dl,

N−1∑
l=0

dle
i2πl/N, . . . ,

N−1∑
l=0

dle
i2π(N−1)l/N

]T
,(14)

hN=µ

N−1∑
l=0

dlx∗l

=
µ√
N

[
N−1∑
l=0

dl,

N−1∑
l=0

dle
−i2πl/N, . . . ,

N−1∑
l=0

dle
−i2π(N−1)l/N

]T
.(15)

From (14) and (15), observe that except for the scale factor,
µ, the elements of gN and hN respectively comprise the IDFT
and DFT coefficients of dk, over the time window of corre-
sponding samples from k = 0 to k = N −1. However, we
should note that formulae in (13) are derived based on the or-
thogonality among {x0, x1, . . . , xN−1}, and hence, they are
valid only when 1 ≤ k ≤ N . Beyond this range, we need
new formulae since, for instance, xN becomes identical to x0,
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and they are not orthogonal, i.e., xHNx0 = xH0 x0 6= 0. To
address this issue, once again from (6), we have

gN+1 =
(
I−µxNxHN

)
gN−µxNxTNhN+µdNxN

= µ

N∑
l=0

dlxl−µ2xN

(
xHN

N−1∑
l=0

dlxl

)

−µ2xN

(
xTN

N−1∑
l=0

dlx∗
l

)
, (16)

in which, the product xN
(

xHN
N−1∑
l=0

dlxl
)

can be decomposed

as

xN

(
xHN

N−1∑
l=0

dlxl

)
= xN

(
xHN

[
d0x0 +

N−1∑
l=1

dlxl

])
. (17)

Furthermore,

xHNd0x0 = d0xH0 x0 = d0, (18)

xHN
N−1∑
l=1

dlxl = xH0
N−1∑
l=1

dlxl = 0. (19)

Similarly,

xN

(
xTN

N−1∑
l=0

dlx∗l

)
=xN

(
xTN

[
d0x∗0+

N−1∑
l=1

dlx∗
l

])
=xNd0. (20)

Substituting (17)-(20) back into (16) simplifies the update
process of gN+1, to yield

gN+1=µ

N∑
l=0

dlxl−2µ2xNd0=µ
N∑
l=1

dlxl+µ(1−2µ)x0d0. (21)

In the next stage,

gN+2 =µ

N+1∑
l=0

dlxl−2µ2xN+1d1−2µ2xNd0

=µ

N+1∑
l=2

dlxl+µ(1−2µ)(x1d1 + x0d0). (22)

In the same spirit, from (7), we have

hN+1 =µ

N∑
l=1

dlx∗
l +µ(1− 2µ)x∗

0d0, (23)

hN+2 =µ

N+1∑
l=2

dlx∗
l +µ(1−2µ)(x∗1d1 + x∗0d0). (24)

The results in (21)-(24) can now be generalized as the time
evolves (until k = 2N ), so that we arrive at

gk=µ
k−1∑

l=k−N

dlxl+µ(1−2µ)
k−N−1∑
l=0

dlxl,

hk=µ
k−1∑

l=k−N

dlx∗
l +µ(1−2µ)

k−N−1∑
l=0

dlx∗
l , k=N+1, . . . , 2N. (25)

After some algebraic manipulations in the same spirit, the
general expressions for gk and hk, which are applicable over
all k ≥ 1, now become

gk = µ

k−1∑
l=k−N

dlxl+µ(1−2µ)
k−N−1∑
l=k−2N

dlxl

+µ(1−2µ)2
k−2N−1∑
l=k−3N

dlxl+· · · , (26)

hk = µ

k−1∑
l=k−N

dlx∗l +µ(1−2µ)
k−N−1∑
l=k−2N

dlx∗
l

+µ(1−2µ)2
k−2N−1∑
l=k−3N

dlx∗
l +· · · . (27)

In both the above equations, the allowable range of the in-
dex l differs in each summation operation, and is governed by
the respective upper and lower limits. However, note that the
valid terms are those with l ≥ 0. If we set µ=1/2 and let k
be multiples of N , i.e., k= τN where τ is a positive integer,
the weight update processes of gk and hk become

gτN =µ

τN−1∑
l=τN−N

dlxl=
1

2
√
N

[ τN−1∑
l=τN−N

dl,

τN−1∑
l=τN−N

dle
i2πl/N ,

. . . ,

τN−1∑
l=τN−N

dle
i2π(N−1)l/N

]T
, (28)

hτN =µ

τN−1∑
l=τN−N

dlx∗l =
1

2
√
N

[ τN−1∑
l=τN−N

dl,

τN−1∑
l=τN−N

dle
−i2πl/N ,

. . . ,

τN−1∑
l=τN−N

dle
−i2π(N−1)l/N

]T
. (29)

Remark 1: The weight vectors gτN in (28) and hτN in
(29) are proportional to the N -IDFT and N -DFT coefficients
of the N previous samples of dk when the time instant k is a
multiple of N , indicating that with an appropriate choice of
input vector and adaptation speed, the proposed WL-CLMS
spectrum analyzer provides a unified means for the simulta-
neous calculation of N -sample block-based DFT and IDFT.
Unlike the situation where the strictly linear CLMS is used to
performN -DFT orN -IDFT separately [1,10], the step-size µ
of the WL-CLMS analyzer is half that of its CLMS counter-
part. This is because WL-CLMS employs two weight vectors,
the updates of which are coupled, and this doubles the weight
dimensionality, as compared with the CLMS analyzer.

An illustration on using the proposed WL-CLMS spec-
trum analyzer to simultaneously implement block-based DFT
and IDFT operations is provided in Fig. 2. The complex-
valued signal to be Fourier analyzed, i.e., dk, was generated
as dk = 1+0.5i+0.8eiπk/2 +0.6ei5π/4 +nk, where nk is a
zero-mean complex-valued Gaussian noise, whose power was
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set to give the signal to noise ratio of 10 dB. Observe that af-
ter N = 32 iterations, the magnitudes of the standard weight
coefficients hk and the conjugate weights gk of WL-CLMS
were in exact accordance with those of block-based 32-DFT
and 32-IDFT operations on dk, respectively. This was also the
case in the phase computation, which have not been provided
due to the page limit.

3. ONLINE DFT AND IDFT COMPUTATION BY
USING THE WL-CLMS SPECTRUM ANALYZER

It is of increasing interest to perform DFT and IDFT opera-
tions for streaming data, so as to provide online Fourier anal-
ysis [23, 24]. This recursive type of DFT and IDFT opera-
tions can be also simultaneously calculated by the proposed
WL-CLMS spectrum analyzer which employs the adaptive
mechanism displayed in Fig. 1. Similar to the analysis in [1],
we define the online DFT and IDFT vectors of N data sam-
ples in a sliding window manner as

DFTk =
1√
N



N−1∑
l=0

dk−(N−1)+l

N−1∑
l=0

dk−(N−1)+le
−i2πl/N

...
N−1∑
l=0

dk−(N−1)+le
−i2π(N−1)l/N


, (30)

IDFTk =
1√
N



N−1∑
l=0

dk−(N−1)+l

N−1∑
l=0

dk−(N−1)+le
i2πl/N

...
N−1∑
l=0

dk−(N−1)+le
i2π(N−1)l/N


. (31)

By setting µ=1/2 and without loss of generality, upon chang-
ing the index l to (l+ k−N), equations (26) and (27) can be
rewritten as

gk =
1

2
√
N



N−1∑
l=0

dl+k−N

ei2πk/N
N−1∑
l=0

dl+k−Ne
i2πl/N

...

ei2π(N−1)k/N
N−1∑
l=0

dl+k−Ne
i2π(N−1)l/N


, (32)

hk =
1

2
√
N



N−1∑
l=0

dl+k−N

e−i2πk/N
N−1∑
l=0

dl+k−Ne
−i2πl/N

...

e−i2π(N−1)k/N
N−1∑
l=0

dl+k−Ne
−i2π(N−1)l/N


. (33)
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Fig. 2. Simulation results of the proposed WL-CLMS spec-
trum analyzer after N = 32 iterations.

Now, by comparing (30) and (33) and (31) and (32), the re-
spective relations between the sliding DFT and IDFT opera-
tions and the WL-CLMS analyzer are obvious, and are given
by

DFTk−1 =2
√
NXkhk, (34)

IDFTk−1 =2
√
NX∗

kgk, (35)

where Xk is an N ×N diagonal matrix, whose elements are
drawn from the input vector xk in (1). Therefore, by mul-
tiplying the weights hk and gk with the corresponding pha-
sor components within xk and x∗

k, respectively, the proposed
WL-CLMS spectrum analyzer provides a unified and simul-
taneous sliding window computation of DFT and IDFT oper-
ations over the N most recent samples of dk from (k −N ) to
(k − 1).

4. CONCLUSIONS

Fundamental relations between the widely linear complex
least mean square (WL-CLMS) adaptive filtering algorithm
and both the discrete Fourier transform (DFT) and inverse
DFT (IDFT) operations have been investigated. We have
shown that with a choice of the speed of adaptation, µ = 1/2,
the standard and conjugate weight vectors within the pro-
posed WL-CLMS spectrum analyzer are proportional to the
block-based DFT and IDFT coefficients over N data samples
after the filter converges. When the proposed WL-CLMS
based spectrum analyzer operates in an online manner, the s-
tandard and conjugate weights are necessary to multiply with
the corresponding phasors to provide sliding-window DFT
and IDFT coefficients. Furthermore, the proposed widely
linear spectrum analyzer can be straightforwardly extended
to perform other complex-valued orthogonal transforms and
their inverse transforms simultaneously, a subject of future
work.
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