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ABSTRACT
Frequency-domain adaptive filters (FDAFs) have been widely used
over the years, but they are still matter of research due to their power-
ful capabilities that differentiate them from the whole family of time-
domain adaptive filters. This paper aims at providing an overview
on FDAFs through a unifying framework that can be used for the
derivation of the most popular algorithms of the FDAF family and
enables the processing of a wide variety of signals, from real-valued
ones to complex- and hypercomplex-valued signals. In particular,
we focus on a recent class of FDAFs in the quaternion domain and
we show how to derive it from the described framework. Moreover,
we evaluate the application of the derived quaternion FDAF to the
processing of 3D audio signals. Experimental results show the ef-
fectiveness of the proposed adaptive filter in estimating the inverse
of a multidimensional acoustic impulse response.

Index Terms— Frequency-domain adaptive filter, Quaternion
adaptive filtering, 3D audio, Adaptive signal processing, Hypercom-
plex signal processing, DSP education.

1. INTRODUCTION

Adaptive filtering has always been an important research topic in the
last half the century [1–6]. However, it has also a great impact on
digital signal processing (DSP) education, since it requires advanced
interdisciplinary knowledge [7]. Indeed, it often characterizes both
classical and advanced signal processing faculty courses.

Online adaptive filters are characterized by a parameter updating
that is performed at each time instant n, when a new signal sample is
fed as input. The most popular adaptive filters are the time-domain
ones (e.g., least mean square (LMS), recursive least square (RLS)
and affine projection algorithm (APA), among others), in which the
filter impulse response, denoted as wn ∈ RM×1, being M the fil-
ter length, is time variant and the convolution algorithm is imple-
mented directly in the time domain [1–6]. Let xn ∈ RM×1 be the
filter input, the filter output is determined by a simple scalar prod-
uct: y [n] = wT

n−1xn. One of the main drawbacks of these filters is
that the computational complexity, proportional to the filter length,
can become prohibitive for significantly long filters, especially for
real-time applications.

A reduction of the computational cost is given by the block (or
also said mini-batch) adaptive filters, like the block LMS, which are
characterized by a periodic update rule [8, 9]. The filter coefficients,
indeed, are updated only everyL samples. Denoting with k the block
index, the filter output is returned in blocks with lengthL, as the con-
volution sum is implemented as yk = Xkwk, where yk ∈ RL×1 is
the signal output, wk represents a static filter for all the rows of the
signal matrix Xk ∈ RL×M .

However, when dealing with real-time application problems, the
best solution is provided by using frequency-domain adaptive fil-
ters (FDAFs) [9–13], which are capable of reducing significantly the
computational complexity, while keeping comparable performance
with time-domain filters. Rather, FDAFs may even achieve conver-
gence performance improvement by simply involving a frequency-
bin power normalization procedure. The main drawback of such fil-
ters is the introduction of a systematic delay between the input and
output signals, due to the intrinsic block approach, which is the same
problem affecting also time-domain mini-batch filters.

Early works on FDAFs were mainly focused to solve problems
using reduced computational complexity with respect to classic
time-domain algorithms [14–18]. Hence, the main goal was to
save resources rather than improving performance. However, nowa-
days, despite the significantly larger availability of computational
resources with respect to some decades ago, the research and devel-
opment on frequency-domain algorithms have never slowed down.
Indeed, we can find recent literature on FDAF-based models aiming
at improving modeling performance [19–22], addressing emerging
and complex signal processing problems [22,23], dealing with high-
resolution data, multichannel and multidimensional signals [24–27].
Thus, we have now FDAFs with higher efficiency and effectiveness.

Despite their powerful capabilities that make them suitable for
several real-time application fields, FDAFs are not always easy to be
clearly explained in adaptive filtering courses due to the additional
theoretical concepts involved with respect to time-domain adaptive
filters (e.g., buffer composition and signal transformations, above
all) and also due to the more complex notation.

The aim of this paper is twofold. Firstly, we provide a unify-
ing framework for the class of FDAF algorithms that can be adopted
in DSP education to introduce the concepts of block filtering, sig-
nal buffering and transformation of signals into a different domain.
This may help to approach frequency-domain filtering even to those
students who may not have all the theoretical knowledge necessary
to cover every aspect introduced in this topic. Secondly, starting
from the proposed framework that holds for real-, complex- and
hypercomplex-valued domains, we show how to derive even new
frequency-domain algorithms. In particular, we derive and propose
a novel FDAF in the quaternion domain and we assess its effective-
ness in a 3D audio processing problem.

The paper is organized as follows. In Section 2, we introduce
a unifying approach for the frequency-domain block filtering, start-
ing from which we describe how to derive a classic overlap-save
FDAF in Section 3. The, in Section 4, we show how to exploit the
framework and simply extend the OS-FDAF to derive a quaternion-
domain FDAF. Experimental results on 3D audio processing are
shown in Section 5, and our conclusion is finally drawn in Section 6.
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2. A UNIFYING FRAMEWORK FOR THE CLASS OF
FREQUENCY-DOMAIN ADAPTIVE FILTERS

Frequency-domain algorithms are defined starting from the same
theoretical assumptions of time-domain ones. However, very of-
ten they are not derived as a simple redefinition “in frequency” of
the time-domain algorithms. Indeed, frequency-domain algorithms
have their own structures and properties that may be even rather dif-
ferent compared to the related time-domain algorithms. However, a
similarity can be found for the FDAFs with the time-domain block
algorithms, since all the frequency-domain algorithms need a block
filtering approach to process the input signal.

The block filtering approach requires an appropriate filling
mechanism of memory buffers, hereinafter simply buffers, which
contain the input/output signal blocks to be processed. In addition,
the transformation operator, here indicated as transformation matrix
F ∈ CN×N , requires the variables redefinition in the new domain.
These aspects, along with others discussed below and related to the
filtering algorithms, involve the proliferation of indices, symbols
and new variables that can sometimes burden the formalism. To this
end, we introduce a unifying framework, depicted in Fig. 1, which
includes the concepts of buffering and transformation and enables
the derivation of the whole family of FDAFs.

FDAFs, like mini-batch algorithms, operate on a L-sample sig-
nal block, but the (possible) domain transformation can be made by
considering a buffer of greater length. In general terms, the transfor-
mation can be performed on a signal segment (or running window)
composed by L new samples (i.e., the new input block) and possi-
bly by a block of M past samples. Therefore, as shown in Fig. 1(a),
the input buffer of length N includes the new block of L samples,
M samples belonging to the previous block and the presence of a
buffer composition mechanism implemented by a simple blockwise
shift and up-date operation.

The framework in Fig. 1(b) involves the quantities:

• The linear transform operator F ∈ CN×N (e.g., discrete-
Fourier transform (DFT) matrix) such that F · FH = I;

• A windowing constraint G that may be used for output and
error signals and also for the weights;

• Sequence block vectors xk, yk ∈ RL×1 and wk ∈ RM×1,
respectively, for input, output and filter weights;

• Time-domain input data matrix Xk ∈ RN×M ;

• Frequency-domain corresponding structuresXk,Y k,W k ∈
RN×1

SaidMF the filter length, for the FDAF algorithms, the block length
is generally chosen as L = MF and the FDAF buffer composition
is usually chosen such that L =M ≡MF . To operate a correct do-
main transformation, for example with a DFT/FFT, and in particular
for the filter output calculation, it is necessary to choose a number
of FFT points N ≥ M + L− 1. A usual choice for FDAF class, is
N = M + L. From the described framework, several FDAF-based
algorithms can be easily derived, as discussed below.

Let us consider the case of very long filters (with thousands of
coefficients), which is rather usual in real applications, the block
length turns out to be necessarily L � MF , thus it is necessary
to perform an impulse response partition for the FDAF implemen-
tation. The resulting partitioned block FDAF (PBFDAF) algorithm
thus enables a block latency reduction. A usual choice is to consider:
a number of P partitions of length M , such that the filter length is
equal to the product MF = P · M , and a block length such that
M = p · L, with p = 1, 2, . . . , P [12, 17, 18, 28].
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Fig. 1. Block adaptive filtering algorithms. (a) Input signal buffer
composition mechanism. (b) Unifying framework for block algo-
rithms in time and in F-transform domain. If the operator F = I,
the algorithm is entirely in the time domain and the switches 1. or
2. position, is indifferent. For F 6= I, the weights adaptation can be
done in the time-domain (switch position 1.) or in the transformed
domain (switch position 2.). (Modified from [6]).

In the extreme case of L = 1 (i.e., a block of 1-sample length),
the FDAF algorithm is defined as transform domain adaptive filter
(TDAF) [29,30]. The input window (also said sliding window here),
is simply defined by the filter delay-line length. In this case, the
operator F performs a linear transformation just to orthogonalize
the input signal so as to facilitate the uniform convergence of the
adaptive algorithm. The change of domain can be of various na-
ture. Although, in theory, the operator F can be any orthonormal
transformation, it is usual to choose transformations that imply, in
addition to the input signal orthogonalization, a computational com-
plexity reduction. Usual choices are the DFT (implemented as FFT),
the DCT or any other transformations tending to input signal orthog-
onalization. It is worth noting that for L = 1, the transformation F
can be replaced by a suitably designed parallel filter bank, uniformly
or not non-uniformly spaced [30]. In addition, in order to obtain a
computational cost reduction, it is possible to perform a signal dec-
imation/interpolation. The resulting filter class in this case is called
subband adaptive filter (SAF) (see for example [2–6]).

3. DERIVATION OF THE OS-FDAF

We derive now a well-known FDAF algorithm starting from the
framework introduced in the previous section.

3.1. The Frequency-Domain Adaptive Filter

The FDAF has a recursive formulation similar to block LMS
(BLMS), also known in the literature as fast LMS [8, 9]. The
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Algorithm 1 Implementation procedure of the OS-FDAF.
InitializationW 0 = 0, P0(m) = δm ∀m
for k = 0, 1, . . . for each block of L samples do

xk ← [x
(M)
old x

(L)
new] buffer composition rule

Xk = FFT [xk] fast Fourier transform
yk = [IFFT(XkW k)]

bLc convolution
Ek = FFT ([0 dk − yk]) frq. domain error
Pk(m) = λPk−1(m) + (1− λ) |Xk(m)|2 , ∀m
µk = µdiag

{[
P−1
k (0) P−1

k (1) · · · P−1
k (N − 1)

]}
∇J = µkX

H
k Ek stochastic gradient

∇J = FFT
([

IFFT [∇J ]dMe
0L

])
grad. constraint

W k+1 =W k +∇J frq. domain up-date rule
end for

learning rule of the time-domain BLMS can be written as ∇Jk =∑L−1
i=0 e

?[kL + i]xkL+i, i.e., the gradient estimate is determined
by the cross-correlation between the data vector xk and the er-
ror ek. Thus the weight update equation can be formulated as
wk+1 = wk +

µB
L
XH
k e?k. Transforming this rule in the frequency

domain (see for example [13]) and using a compact and general
notation [6], we obtain

W k+1 =W k +G
[
µkX

H
k E

?
k

]
(1)

where [·]H is the Hermitian operator, µk is a diagonal matrix µk =
diag {[µk(0), µk(1), . . . , µk(N − 1)]} containing the learning rates
(or step sizes) that can assume different values for each frequency
bin. The matrix G represents the windowing or gradient constraint,
which is necessary to impose the linearity of the correlation in the
gradient calculation. It can be interpreted as a particular signal pre-
windowing in the time domain and it is inserted in learning rule only
to generalize the FDAF formalism.

In the class of the FDAF algorithms the error calculation can
be performed directly in the time or frequency domain. In the case
where the error is calculated in frequency domain, the gradient con-
straint can be chosen unitary G = I and the FDAF is said uncon-
strained frequency domain adaptive filter (UFDAF) [15].

3.2. Frequency-Bin Step-Size Normalization

One of the main advantages of the frequency approach is that
the adaptation equations (1) are decoupled, i.e., in the frequency do-
main, the convergence of each filter coefficient is not dependent on
the other ones. It follows that to speed-up the convergence rate, such
that we can obtain a uniform convergence, it is possible to define
a simple power normalization rule. Indicating with Pk(m) the es-
timated power of the m-th frequency bin and, let µ a suitable pre-
determined scalar parameter, the step size can be chosen indepen-
dently for each frequency bin m, proportional to the inverse of its
power, i.e., µk(m) = µ/[α + Pk(m)], m = 0, . . . , N − 1,
where the parameter 0 < α � 1 avoids divisions by zero. So,
the power normalization rule allows to accelerate the slower conver-
gence modes. Obviously, in the case of white and stationary input
processes, the powers are identical for all frequencies bin and we
have µk = µI. Moreover, to avoid significant step-size discontinu-
ity that could destabilize the adaptation, as suggested in [14], it is
appropriate to estimate m-th power frequency bin with a one-pole
low-pass smoothing filter usually implemented by the following fi-
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Fig. 2. Overlap-Save QFDAF block diagram. With S and P we
denote the operators that extract the simplex and perplex parts of a
quaternion, respectively [25].

nite difference equation

Pk(m) = λPk−1(m) + (1− λ)|Xk(m)|2 (2)

where λ represents a forgetting parameter and |Xk(m)|2 the m-th
measured energy bin.

3.3. Overlap-Save FDAF Algorithm

The overlap-save FDAF (OS-FDAF) algorithm is the frequency-
domain equivalent version of the BLMS, since it has the same con-
vergence characteristics in terms of speed, stability, misalignment.
It converges, in the mean, to the optimum Wiener solution [13]. The
possibility of choosing different learning rates for each frequency
bin, as for the power normalization (2), allows a convergence speed
improvement without, however, further improving the minimum
mean-square error (MSE). Compared to the BLMS, the OS-FDAF
shows the dual advantage of reduced complexity and higher conver-
gence speed (due to the step-size normalization). However, as the
FFT is calculated for each signal block, the main drawback is that
the algorithm introduces a systematic delay between the input and
output of the filter of (at least) L samples.

In the implementation, the constraint matrix G does not appear
explicitly . The FFT is used instead. An explicit determination of G
would lead to loose the computational cost reduction inherent to the
FFT calculation.

The algorithm implementation is described in Algorithm 1,
where ek,dk ∈ RL×1 are the time domain error and desired output
of the k-th sample block.

4. QUATERNION FDAF

In recent years, a large interest has arisen in the implementation of
quaternion adaptive filtering, which led to the extension of several
time-domain algorithms into the quaternion domain [31, 32].
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Fig. 3. Quaternion-Ambisonic room impulse response (RIR). (a) B-Format RIR. (b) Estimated inverse of RIR (Inv-RIR) by overlap-save
QFDAF. (c) Quaternion convolution between RIR and Inv-RIR.

Introduced in 1843 by Sir William Rowan Hamilton, quaternion
algebra is based on the fundamental formula with the symbols ı̂, ̂, κ̂;
namely, ı̂2 = ̂2 = κ̂2 = ı̂̂κ̂ = −1. Quaternions, extend the com-
plex numbers with four components, one scalar and three imaginary
parts, defined as q ∈ H = q0+ q1 ı̂+ q2̂+ q3κ̂. The main feature of
quaternions is that multiplication of two quaternions is noncommu-
tative ı̂̂ 6= ̂̂ı. So, the quaternions form non-commutative algebra
that allows the definition of an associative skew-field, i.e., satisfying
all the usual properties of fields over real- or complex-valued num-
bers, except the commutative properties of the product.

Due to this particular property, the convolution/correlation over
time is not equivalent to the frequency domain product. Thus, the
extension of the FDAF methods to the quaternion domain is not a
trivial operation and can be computed using the following equation
(see [25] for further details)

Y k =W a
kXk +W

b
kν2X−k

Ck = Ea
kX

H
k +Eb

kν2X
H
−k

(3)

where ν2 is a versor that describes the spatial direction of the imagi-
nary part of a quaternion. In fact, differently from the real/complex-
valued OS-FDAF, in the quaternion domain some modifications are
required due to the fact that the convolution theorem is not valid in
the standard formulation as the product of the DFT sequences, but
it is slightly more complicated. However, exploiting the framework
and the derivation of the OS-FDAF introduced in the previous sec-
tion, it is easy to derive the scheme of the overlap-save quaternion
FDAF (OS-QFDAF), reported in Fig. 2.

5. EXAMPLE OF APPLICATION TO 3D AUDIO

In this Section, we propose a quaternion adaptive 3D audio pro-
cessing application, considering the representation of the acoustic
field with a coincident microphones array (CMA). In particular, we
consider the Ambisonics microphone recording technique, which is
based on local-space sampling of the acoustic field with an CMA.

Each microphone has a polar diagram equal to the Fourier spherical
harmonics so that the acoustic pressure field, due to external sources,
can be decomposed into a set of orthogonal functions. In particular,
the B-format Ambisonic is composed by four microphones, one om-
nidirectional, indicated with W , and three figure-of-eight capsules,
indicated with X,Y, Z. Let w[n], be the signal corresponds to the
omnidirectional microphone, whereas x[n], y[n], z[n], are the com-
ponents that would be picked up by figure-of-eight capsules oriented
along the three spatial axes; these signals are representative of the
same acoustic sources and therefore strongly correlated with each
other. The idea is to consider the B-format 3D audio captured as a
quaternion signal [33,34], that is s[n] = w[n]+x[n]̂ı+y[n]̂+z[n]κ̂.

As an application example, we consider the 3D components
W,X, Y, Z of a room impulse response (RIR) captured with a
B-format soundfield microphone, depicted in Fig. 3(a). In order
to derive the estimated inverse impulse response (e.g., for room
equalization purposes) we process the quaternion signals by the
OS-FDAF described in Section 4. Inversion results are depicted in
Fig. 3(b). Finally, in order to demonstrate the consistence of the
proposed algorithm, in Fig. 3(c) we show the result of the quater-
nion convolution between the RIR and its inverse that, from a simple
visual inspection, it approximates perfectly the unitary real impulse.

6. CONCLUSIONS

Adaptive filtering represents a central theme in several university
courses oriented to signal analysis. Frequency-domain algorithms
play an important role in adaptive filtering due to their efficient ca-
pabilities, but they may result difficult to introduce due to heavy
notation and variety of algorithm versions. In this paper, we have
introduce FDAFs in a simplified, extended and unitary way, from
which the most popular algorithms belonging to the family of such
filters can be easily derived. The proposed framework also enables
the derivation of complex and hypercomplex FDAFs. In particular,
we show how to derive a quaternion OS-FDAF, whose effectiveness
has been proved in a 3D audio signal processing problem.
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