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ABSTRACT

We sketch some aspects of LMS particularly focussing on
some puzzles, problems and potentials. We explain the ’inde-
pendence heuristic’ by means of averaging theory for which
we give a simple expose’. We suggest an explanation for the
’urban myth’ that white noise only performance formulae can
be used as surrogates for the correct performance formulae
which involve autocorrelations.

We then extend the discussion to more recent network ver-
sions such as diffusion LMS. We show that the sharing aspect
of network LMS algorithms induces a two time scale struc-
ture (something not yet widely known) and exhibit its con-
sequences. We comment on the recent upsurge of interest in
‘online learning’ in machine learning and its failure to ref-
erence the adaptive signal processing literature. Finally we
speculate on future developments of LMS.

Index Terms— LMS, adaptive, online, averaging

1. INTRODUCTION

Adaptive or online estimation algorithms developed in the
1950s in two separate disciplines: control and signal pro-
cessing. In control the seminal algorithm was the ’MIT rule’
[1], while in signal processing it was the Least Mean Square
(LMS) algorithm of Widrow and Hoff [2],[3]. Here we con-
centrate on the signal processing aspects.

Further development has continued in both disciplines to
the present time, although without much interaction. This is
partly explained by the fact that in signal processing one is
mostly in an open loop setting whereas in control one is in
a closed loop setting. More recently online algorithms have
attracted attention in machine learning from two directions.
Firstly from reinforcement learning and so dating from the
mid 1980s [4],[5]. Secondly due to the emergence of stream-
ing data applications and so dating from the early 2000s [6].

No aspect of online parameter estimation has escaped
attention: algorithm develoment; algorithm convergence; al-
gorithm performance; and applications. Thus variants of
LMS such as NLMS [7],[8] soon emerged (and continue to

do so e.g. [9]) and more recently network versions are under
development [10]. Convergence analysis remains a chal-
lenging problem as does performance analysis [11],[12],[13].
Applications - in diverse areas [14],[15] (two notable success
areas are Telecommunications and Biomedical Engineering)
continue to emerge particularly driven recently in the sig-
nal processing community by sensor network applications
[10],[16],[17].

It would require a full length journal paper to even attempt
to survey just some of these aspects. Instead here we focus
on some puzzles and blindspots of algorithm development,
convergence and performance.

Before continuing let us note the parallel tradition in
online estimation of algorithms with decaying gains e.g.
[18],[19]. These algorithms have limited use in practice be-
cause they are incapable of tracking time-varying parameters
since they lose the ability to adjust to new information [12].
On the other hand they are often easier to analyse than fixed
gain algorithms and so can provide insight in complicated
cases. Here we discuss only fixed gain algorithms.

The remainder of the paper is organised as follows. In
section 2 we discuss the first order behaviour of LMS. In sec-
tion 3 we discuss performance i.e. second order behaviour. In
section 4 we discuss network versions of LMS. In section 5
are brief speculations on the future and conclusions. Lack of
space precludes a treatment of tracking: see [20].

2. THE FIRST ORDER BEHAVIOUR OF LMS

LMS deals with the problem of estimating, in real time, a
time-varying vector parameter or weight sequence wt in the
regression problem

yt = xTt wt + nt (2.1)

where yt is an observed scalar sequence; xt is an observed
d-vector regressor sequence and nt is an unobserved noise
sequence. The problem is to track wt.

Usually the problem is approached into two stages:

static estimation when wt is static or at equilibrium i.e.
wt = we for all t
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time-varying estimation when wt varies with time.

The static case is simpler than the time-varying case but pro-
vides a lot of useful insightful for studying the time-varying
case. For lack of space we limit our discussion to the static
case; see [12],[11],[21] for the time-varying case.

2.1. Derivation

LMS is simply a steepest descent algorithm for minimizing
the instantaneous squared error criterion Jt(w) = 1

2e
2
t where

et = et(w) = yt − xTt w is the error signal. It has the classic
form of all adaptive algorithms

wnew = wold + gain× gradient× error
ŵt = ŵt−1 + µxtet

= ŵt−1 + µxt(yt − xTt ŵt−1) (2.2)

We rewrite this in ’difference’ form

δŵt = ŵt − ŵt−1 = µxt(yt − xTt ŵt−1)

2.2. Assumptions

We introduce the following assumptions.

A1. The sequences nt, xt are strictly stationary and sta-
tistically independent. Further xt has zero mean with
variance matrixRx and nt has zero mean with variance
σ2
n. Also xt, nt have corresponding autocovariance se-

quences γxk , γ
n
k .

A2. The matrix A = I − µRx is a stability matrix.
This is equivalent to the condition that all eigenvalues
λi of Rx satisfy 0 < µλi < 2.

2.3. Error System

To analyse the behaviour of the algorithm we need to form an
error system. Introduce the estimation error w̃t = ŵt − we.
Then from the LMS update (2.2) and the regression model
(2.1) we find

δw̃t = −µxtxTt w̃t−1 + µxtnt (2.3)

This is the LMS error system and is a time-varying stochastic
difference equation (sde) whose behaviour is by no means
simple to analyse.

2.4. Convergence via the Independence Heuristic

We proceed initially in a traditional manner and introduce the:

Independence Heuristic1 (IH). w̃t−1 and nt are treated
as being statistically independent.

1A better word than assumption

This heuristic gained wide attention following [22] but has
an earlier origin: see [8] for further details and references.

Denote m̃t = E(w̃t). Then using A1 and the IH and
taking iterated conditional expectations through (2.3) gives

δm̃t = −µRxm̃t−1 ≡ m̃t = (I − µRx)m̃t−1 (2.4)

For reasons explained below we call this difference equation
the ’averaged system’. It is well known that stability of the
averaged system i.e. convergence to 0 occurs iff A2 holds.

While this result has been obtained by an heuristic argu-
ment it is borne out remarkably well in practice [14]. The
question is why?

This remains a topic of debate [23],[24]. But by far the
best explanation is to be found in averaging theory [12].

2.5. Convergence via Averaging

We sketch the argument. Starting at an arbitrary time T we
sum the error system over a time interval of length N to get

w̃T+N − w̃T = −µΣT+N
T xtx

T
t w̃t−1 + µΣT+N

T xtnt

Noow if µ is small and N is not to large then for t ∈ [T, T +
N ] w̃t−1 will not have changed very much from its value
w̃T−1 at the start of the interval and so we can replace w̃t−1
by that value to get

w̃T+N − w̃T ≈ −µΣT+N
T xtx

T
t w̃T−1 + µΣT+N

T xtnt

For fixed T , by A1 and the ergodic theorem, we have
1
N ΣT+N

T xtx
T
t → Rx and 1

N ΣT+N
T xtnt → E(xtnt) = 0. So

if N is large enough we can approximate the sum by NRx

and the driving term by 0 to get

w̃T+N − w̃T ≈ −µNRxw̃T−1 + 0

Now successive differencing yields the ’averaged system’ al-
ready found.

It turns out that the averaging approach has a huge ad-
vantage over the IH because the argument above can be made
rigorous [12]. Further averaging methods can be used to anal-
yse the behaviour of any adpative algorithm.

2.6. What Kind of Convergence?

Athough both heuristic arguments have produced the same re-
sult, a careful perusal of the two approaches shows that they
are actually delivering different kinds of convergence. The
IH is delivering convergence in mean whereas the averaging
heuristic is based on a realization-wise analysis and so is de-
livering some kind of converge with probability 1 (wp1).

In fact because we are dealing with online parameter esti-
mation we only have one realization and so wp1 convergence
is what we need to address. Convergence in mean applies
to averages over independent repeat simulations and so is of
lesser interest. Let us then consider a formal wp1 analysis.
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2.7. wp1 Analysis

The first result is a surprise.

Result I. LMS does not converge.

Proof. In order for the sequence w̃t to converge it must
have at least one equilibrium point i.e. a value where motion
ceases. Let w∗ be such a point. Then we must have

0 = δw∗ = µxtx
T
t w∗ + µxtnt

There are two cases. If w∗ 6= 0 then cancelling µxt we see
that nt = a linear combination of the regressors. But this
contradicts A1. If w∗ = 0 then we get xtnt = 0 which is a
contradiction of A1. The result follows.

Where then does this leave the ’convergence’ analyses
above? What happens is that the LMS trajectory fluctuates
in the vicinity of the trajectory of the averaged system [12].
The magnitude of these fluctuations can be captured in a ’hov-
ering theorem’ [12] which, for any given T > 0, provides a
wp1 bound on sup0<t<T

µ
‖ w̃t −mt ‖ and is controlled by

the size of µ.
Averaging methods, which may be regarded as a gener-

alization of perturbation methods, have a long history (see
chapter notes in [12]). Averaging for deterministic systems
was first put on a rigorous footing in the 1930s and averaging
for stochastic systems emerged in the 1960s in the Russian
literature. Significant developments followed in the Ameri-
can literature in the 1970s. Averaging methods were intro-
duced into adaptive control by Ljung (stochastic) [25] and
Kokotovoic (deterministic) [26]. Competitors to averaging
are weak convergence methods ,[21],[27] and the so-called
ODE method [25]. Both weak convergence and the ODE
method gain some mathematical advantages by moving to
continuous time. But they lose the ability to provide specific
stability conditions such as A2 (they can get the lower bound
but not the upper bound). Further they cannot deliver crucial
results such as the hovering theorems. Weak convergence also
requires a sophisticated mathematical development which av-
eraging does not.

3. LMS PERFORMANCE

The issue here is to get more detailed information on the size
of the variance of the steady state fluctuations of the weight
error

P (µ) = E(w̃tw̃
T
t )

as well as the mean squared error (MSE)

E(µ) = E(e2t ) = E(yt − xTt ŵt−1)2

These classic performance measures were introduced and ap-
proximated in the seminal paper [22].

The calculation of P (µ) and E(µ) are very challenging
problems which however have been carried out in earlier
work.

Result II. Under A1,A2 we have P (µ) = Poµ + o(µ)
where Po obeys the Lyapunov equation

RxPo + PoRx = Fxn(0) = Σ∞−∞γ
x
kγ

n
k

Proof. This is a special case of results in [20].
Note that the term on the right side is the spectral matrix of
xtnt at zero frequency.

Result III. Under A1,A2 we have E(µ) = µtr(Fxn(0))+
o(µ).

Proof. This is a special case of results in [20].

The crucial feature of these performance formulae is that
they involve autocovariances of the signals xt, nt. However
they have the unusual property that if either xt or nt is a white
noise then they reduce to expressions that depend only on the
signal variances i.e. they reduce to the formuae one gets by
assuming the signals are both white noise i.e. the ’white noise
only’ formulae. This helps explain the ’urban myth’ that the
’white noise only’ formulae can be used as surrogates for the
autocorrelated formulae above.

4. NETWORK LMS

While Electrical Engineering was an early entrant into the
study of networks e.g. telephone exchanges in the 1910s, net-
work science has a complex history spread across a number
of disciplines [28]. The interest in adaptive signal processing
on networks emerged around 2005 in conjunction with a re-
lated interest in the control community; both driven partly by
the ’consensus’ problem. Distributed versions of LMS date
from this period e.g. [29]. A survey and extensive reference
list can be found in [10].

In the static network setting we have one regression equa-
tion at each node k of N nodes but with a common weight
vector

yk,t = xTk,twe + nk,t, k == 1, · · · , N

There are a number of generalizations of LMS to the network
case [10]. But they each use information from network neigh-
bours to improve the quality of the updates. But what was
missed until our recent work [30],[31] is that this sharing in-
duces a mixed time scale structure in these network versions
of LMS.

The general diffusion LMS algorithm has the form [30]

ŵt = AT
2 (AT

o − µRt)AT
1 ŵt−1 + µAT

1 σ
xy
t

where w̃t has weight entries from each node; Ai = Ai ⊗ Id
where Ai are N ×N adjacency matrices;Rt has blockdiago-
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nal entries xk,txTk,t; σ
xy
t has entries xk,tyk,t. The correspond-

ing error system is [30]

w̃t = AT
2AT

oAT
1 w̃t−1 − µAT

2RtAT
1 w̃t−1 + µAT

2 νt (4.1)

where νt has entries xk,tnk,t. This has some similarities with
the single node case but also significant differences. In the
single node case δw̃t = w̃t − w̃t−1 = O(µ). That is not
true here. Instead due to the eigen properties of the adaja-
cency matrices (see below) there is a two time scale structure
whereby a special linear combination of δw̃t is O(1) while
all others are O(µ). This is crucial to the analysis of the error
system and was revealed for the first time in [30].

The error system in (4.1) is an example of a single time
scale system where all states have a rate of change (i.e. δw̃t)
which is O(µ). A two time scale system has the following
structure [12],[31]

δzt = µf(t, zt−1, yt−1)

yt = Syt−1 + µg(t, zt−1, yt−1)

where S is a stability matrix. So some states, the ’slow’ states,
have a rate of change O(µ) but the other states , the ’fast’
states, have a rate of change O(1). Averaging analysis can
handle these kinds of systems.

Using averaging analysis (for two time scale systems) the
following results were obtained in [30],[31] for the first time.
To state them we need some assumptions.

N1 M = A1A0A2 is primitive.
A sufficient condition for this is that the network graph
is strongly connected with at least one self loop.

N2 xk,t, nk,t are zero mean strictly stationary.
The nodal variances are Rx,k, σ

2
n,k. The nodal autoco-

variances are γxkr , γnkr .

A crucial consequence of N1 is that M is then left stochastic
i.e. 1TM = 1T and has a right eigenvector with unit eigen-
value, called the Perron eigenvector which is a mass function
i.e. its entries are ≥ 0 and sum to 1. The left stochastic prop-
erty of M induces the two time scale structure.

Introduce A = ΣN
1 αkRx,k where αk are coefficients

computed from the Perron eigenvector of M . Also denote the
spectral radius of A by ρ(A).

Result IV. [30] Under N1,N2 the averaged system asso-
ciated with the error system (4.1) is exponentially stable if
0 < µρ(A) < 2.

The associated hovering thoerem is given in [30].

Result V. [31] Under N1,N2 the network weight error
variance matrix P (µ) = Poµ + o(µ) where Po satisfies a
Lyapunov equation

AP + PA = Fxn(0) = ΣN
1 α

2
kFxnk(0))

Fxnk(0) = Σ∞−∞γ
nk
r γxkr

Result VI. [31] Under N1,N2 the network mse (which
totals mse over all nodes) is given by E(µ) = µtr(Fxn(0) +
o(µ).

These results are remarkable extensions of those in sec-
tion 2. Again we need to correct the ’urban myth’ that white
noise only performance formulae are ’good’ surrogates for the
correct ’autocorrelated’ formulae above. The requirements
for this are much more stringent than in the single node case.
It is necessary that for every node either xk,t or nk,t (or both)
are white noises.

5. CONCLUSIONS AND THE FUTURE

In this paper we began by sketching first and second order
analysis of the single node LMS algorithm. We showed that
the success of the independence heuristic in first order analy-
sis can be largely explained by an averaging analysis. Under
stationarity assumptions we then recalled formulae for weight
error variance and mean squared error. It turns out these for-
mulae reduce to the white noise only formulae when either
the regressors or the measurement noise are white. This likely
explains the ’urban myth’ that white noise only formulae are
adequate surrogates even when the regressors and measure-
ment noise are autocorrelated.

We then sketched extensions to the network case. We
pointed out a fundamental two-time scale property that is as
yet not widely understood. We then sketched extensions of
the single node performance analyses based on very recent
results.

Adaptive signal processing and LMS in particular have a
very rich history of successful applications across a range of
disciplines. However the upsurge in interest in online ’learn-
ing’ from the machine learning community has raised signifi-
cant problems. So far the machine learning community shows
little awareness of the rich six decade literature on adaptive
signal processing and adaptive control and is spending con-
siderable energy working on problems that are already solved.
How then to address this? Currently just a handful of signal
processing researchers present their work at machine learning
conferences. That needs to change.

Because adaptive algorithms have short memory they can
extract patterns effectively from data streams while needing
little storage. In a ’big data’2 world, this gives adaptive al-
gorithms a powerful comparative advantage even in offline
or batch settings. For this simple reason adaptive algorithms
(and the simplest of them all, LMS) have a guaranteed future.
The internet of things won’t be possible without them.

2You have big data if it can’t be fitted on one computer
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