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ABSTRACT

Reflection tomography is an inverse scattering technique that
estimates the spatial distribution of an object’s permittivity by
illuminating it with a probing pulse and measuring the scattered
wavefields by receivers located on the same side as the transmitter.
Unlike conventional transmission tomography, the reflection regime
is severely ill-posed since the measured wavefields contain far less
spatial frequency information about the object. In this paper, we
propose an incremental frequency inversion framework that
requires no initial target model, and that leverages spatial
regularization to reconstruct the permittivity distribution of highly
scattering objects. Our framework solves a wave-equation
constrained, total-variation (TV) regularized nonlinear least squares
problem that solves a sequence of subproblems that incrementally
enhance the resolution of the estimated object model. With each
subproblem, higher frequency wavefield components are
incorporated in the inversion to improve the recovered model
resolution. We validate the performance of our approach using
synthetically generated data for retrieving high-contrast material
such as water in an underground radar imaging setup.

Index Terms— Computational imaging, inverse scattering, total
variation regularization, alternating direction method of multipliers

1. INTRODUCTION

Inverse scattering deals with the problem of reconstructing an
image of the spatial permittivity of an object by probing it using
electromagnetic or acoustic waves of finite bandwidth and
measuring the scattered wavefield around the object. An incident
wavefield propagating inside the object induces multiple scattering
waves that are generally measured on the boundary of the material.
Consequently, the scattered waves contain information about the
spatial distribution of the material properties, which has led to
applications in numerous fields, such as, non-destructive testing [1],
optical tomography [2], geophysical imaging [3], ground
penetrating radar [4], and medical imaging [5].

Two main acquisition modes exist in inverse scattering: (i)
transmission mode, where the transmitters and receivers are located
on opposite sides of the material; (ii) reflection mode, where the
transmitters and receivers are located on the same side of the object.
The reflection setup generally arises due to a limitation to accessing
only one side of the material, as in the case of underground
imaging, illustrated in Figure 1. We focus our presentation on the
reflection tomography scenario where the problem is severely

∗This work was conducted while Ajinkya Kadu was an intern at MERL.

Fig. 1: Acquisition scenario for underground imaging. Green ?
denotes the source and red5 denotes the receivers.

ill-posed. This scenario often arises in underground imaging
applications such as ground penetrating radar and seismic imaging.

Numerous techniques have been proposed for solving the
inverse scattering problem in the reflection regime. Earlier
approaches dealt with iteratively linearizing the scattering model,
using straight ray theory, Born approximation, Rytov
approximation, and reverse-time migration [6, 7, 8, 9]. However,
such linear models fail to account for the complex interaction
between the wavefield and the material properties that result in
multiple scattering. As a result, these methods require an accurate
initial target model to enable the inversion and generally suffer from
poor reconstruction quality especially when the material is
inhomogeneous or contains highly scattering objects. Recently, the
nonlinear interaction between the wavefield and the material has
been incorporated into the inversion process using the wave
equation [10]. The inverse problem that deals with the
wave-equation based scattering model is known as full-waveform
inversion (FWI) [11, 12, 13]. This approach has been utilized for
diffraction tomography [14, 15]. More recently, learning
approaches have been proposed to solve such scattering
model [16, 17].

In this paper, we develop an incremental frequency inversion
framework that poses the underground imaging problem as a
sequence of constrained nonlinear least-squares subproblems. With
each new subproblem, higher frequency wavefield components are
included in the data-misfit function, thereby regularizing the
solution of the new subproblem to remain consistent with the lower
frequency measurements. The nonlinear interaction between the
wavefield and the medium is accurately modeled through a
wave-equation constraint. Moreover, the recovered solution is
further regularized through a bounded total-variation penalty
function. We describe in Section 2 the formulation of the forward
and inverse problems and discuss the additional challenges of
solving the reflection tomography problem. In Section 3, we present
the details of our incremental frequency inversion framework and
validate the performance of our proposed approach in Section 4.
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2. PROBLEM FORMULATION

We begin by presenting the scattering model that describes the
relation between the scattered wavefield and the medium
parameters. Next, we formulate the discrete inverse problem to
reconstruct the medium from the set of measured scattered
wavefield. Finally, we discuss some challenges in estimating the
material properties of an object in the reflection regime.

2.1. Forward problem

A wave-equation governs the acoustic or electromagnetic scattering
from an inhomogeneous medium in the time domain. An equivalent
representation in the frequency domain is the scalar Helmholtz
equation. In this work, we focus on the integral form of the
Helmholtz equation, known as the scalar Lippmann-Schwinger
equation. Let usc : Ω → C be the scattered wavefield inside a
spatial domain, or region of interest, Ω, let f : Ω → R be the
medium parameters and denote by g : Ω → C the free-space
Green’s function. The scalar Lippman-Schwinger scattering
equation is then defined as follows

usc(x) = uin(x) + k2

∫
Ω

g(x− r)usc(r)f(r) dr, ∀x ∈ Ω (1)

where, uin is the input wavefield generated by the transmitter, and
k = 2π/λ is the wavenumber with λ denoting the wavelength. The
medium parameters, f(x) = (ε(x)− εb), is the relative
permittivity, where ε(x) is the permittivity of the object and εb is
the permittivity of the background, which is assumed to be the
vacuum (εvacuum = 1). The free-space Green’s function for the
Helmholtz equation

(
∇2 + k2

)
g = δ is given by:

g(x) ,


− i

2k
e−ikr d = 1

− i
4
H

(2)
0 (kr) d = 2

1
4πr

e−ikr d = 3

,

where r = ‖x‖, H(2)
0 is the zero-order Hankel function of second

kind, and d is the dimension of Ω. The scattered wavefield is then
measured at the receivers resulting in the following data equation:

y(x) =

∫
Ω

h(x− r)f(r)usc(r) dr, ∀x ∈ Γ, (2)

where h : Ω→ C denotes the Green’s function of the receiver and Γ
is the receiver domain. The forward problem involves computing y
given the input wavefield uin, medium parameters f , and the Green’s
functions g and h.

In the discrete setting, the scattering equation and data equation
reduce to the following system of linear equations for each
transmitter illumination and wave number:

u = v + Gdiag (f)u,

y = Hdiag(f)u,
(3)

where u ∈ CN and v ∈ CN are the scattered and input wavefields,
respectively, N denotes the number of gridpoints used to discretize
the domain Ω, f ∈ RN denotes the medium parameters, while
G ∈ CN×N and H ∈ Cnrec×N are the Green’s functions of the
domain and receivers, respectively. Let nrec be the number of
receivers that discretizes the receiver domain Γ, then y ∈ Cnrec is
the noise-free scattered wavefield measured at the receivers. The
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Fig. 2: Comparison of the spatial frequency content of the received
wavefields between the transmission mode and the reflection mode
from a transmitted pulse containing 2GHz, 3GHz, and 5GHz
frequency components.

critical step in the forward problem involves estimating the
scattered wavefield u by inverting the matrix
A := I − Gdiag (f), where I denotes the identity operator. As
the discretization dimension N increases, explicitly forming the
matrix A and its inverse becomes prohibitively expensive.
Therefore, a functional form of A along with the conjugate-gradient
method (CG) are often used to perform the inversion. We note here
that the convergence of CG depends on the conditioning of the
operator A, which become ill-conditioned for large wavenumber
and highly scattering medium, i.e., large value of ‖f‖∞.

2.2. Inverse problem

An inverse scattering problem is defined as the estimation of
medium parameters given the measurement of scattered wavefield
at nrec receivers for each input wavefield generated from nt
transmitters. In the discrete setting and assuming that
measurements are contaminated by white Gaussian noise, we can
formulate inverse problem as follows:

min
f ,u

nf∑
j=1

nt∑
i=1

1
2
‖yij −Hj diag(f)uij‖22,

s.t. (I−Gj diag (f))uij = vij ∀i, j,

(4)

where nf are the number of frequencies, and yij is the noisy data
received at nrec receivers from transmitter i at frequency j.

Let Π = {f?,u?} denote the solution set of the problem (4). In
general, problem (4) is ill-posed and admits multiple solutions, i.e.,
|Π| > 1. Therefore, spatial regularization in the form of a penalty
function R(f) is often added to reduce the solution space. The
regularized problem is then represented as

min
f ,u

∑
i,j

Dij (f ,uij) +R (f) ,

s.t. (I−Gj diag (f))uij = vij ∀i, j,
(5)

where, Dij represents the data-fidelity term for transmitter i at
frequency j.

2.3. Inversion challenges in the reflection regime

A critical distinction between the transmission and reflection modes
in inverse scattering manifests itself in the amount of spatial
frequency content that can be captured by the measured wavefields.
In the transmission regime, the received measurements generally
capture more of the lower spatial frequencies of the target
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distribution compared to the reflection regime. We illustrate this
fact by plotting in Figure 2 the spatial frequency content of the
received wavefields of a target illuminated from the left side by a
flat spectrum pulse containing 2GHz, 3GHz, and 5GHz frequency
components. We compute the spatial frequency content in each case
by solving (4) for f while providing the true scattered wavefields
u?ij =

(
I−Gj diag

(
f true))−1

vij for each frequency. Notice
how the reflection mode exhibits very little energy around the low
spatial frequency subbands in the Fourier plane. This is in stark
contrast to the transmission mode where a significant portion of the
received signal energy corresponds to the low spatial frequencies.

3. PROPOSED METHOD

In this section, we present an incremental frequency inversion
method that does not require a smooth initial model of the target
image for successful recovery.

3.1. Frequency Separation

The least-squares cost function in (5) provides a natural separation
across frequencies. Moreover, the topology of the nonconvex cost
function varies drastically between frequencies and can be
leveraged to find good local minima. We illustrate this behavior
using a simple cylindrical model for the target with a constant
reflectivity c as shown in Figure 3(a). The true target has a
reflectivity c = 100 and is illuminated with transmitters located at
-0.6m y-position. We plot in Figure 3(b) the value of the
data-fidelity cost function

∑k
j=1

∑nt
i=1Dij (f ,uij) , where k

varies from the 10 MHz index to the 50 MHz index, and where the
reflectivity c ranges from 0 to 120. Notice that as higher frequency
wavefields are introduced, the cost function starts to exhibit many
local minima that are farther away from the global minimizer
compared to the low-frequency wavefields.

The observations above led us to propose an incremental
frequency inversion framework where the model of the object’s
permittivity is sequentially updated as higher frequencies are
included in the inversion. Given a measured wavefield containing
nf frequency components indexed in increasing order from 1 to nf,
our framework iteratively estimates the model from low to
high-frequency while keeping the low-frequency cost function as a
regularizer for high-frequency inversions:

for k = 1, . . . , nf :(
fk,u?

)
, argmin

f ,u

{
Dk (f ,uk) +

k−1∑
j=1

λjDj(f ,uj) + R(f)

s.t. (I−Gj diag(f))uij = vij ∀i, j

}
,

(6)

where Dj(f ,uj) =
∑nt
i=1Dij (f ,uij), and λj ∈ (0, 1] are

regularization parameters that control the impact of the
low-frequencies cost functions with respect to the kth-frequency
cost function. Therefore, instead of solving a single nonconvex
minimization problem in (5), we solve nf subproblems sequentially
according to (6), where the sequence of solutions moves us closer to
the global minimizer of (5).

To solve the minimization problem in (6), we use a proximal
Quasi-Newton method [18]. We first compute the gradient of the
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Fig. 3: (a) Illustration of a cylindrical object with true reflectivity
equal to c = 100 measured by five co-located transmitters and
receivers. (b) Topology of the cost function on the frequency content
of the wavefield relative to the estimated reflectivity c as it varies
from 0 to 120.
function

F(f ,u) , Dk (f ,uk) +

k−1∑
j=1

λjDj(f ,uj)

with respect to f , with the wavefield u satisfying the PDE
constraints. Such gradient computation is performed using an
adjoint-state method [19]. A descent direction is then obtained by
forming an approximation to the Hessian using limited memory
BFGS [20]. A (t+ 1)th-iterate of the model is then given by

f (t+1) , PTV≤τ
(
f (t) − γtH̃−1∇fF(f (t),u)

)
,

where γt is a step length computed using backtracking line-search
[21], H̃ is an L-BFGS Hessian, and PTV≤τ (·) is a proximal operator
for the TV-norm constrained by τ . For each frequency batch in (6),
we keep updating the model till the norm of the gradient diminishes
to a small value.

Algorithm 1 Proximal for constrained TV regularization

Input: w ∈ Rn,D ∈ Rm×n, τ > 0, ρ > 0, tmax, γ ∈ (0, 1]

Output: f (tmax)

1: f (0) = w(k), z(0) = 0,λ(0) = 0
2: for t = 0 to tmax do
3: f (t+1) :=

(
I− ρDTD

)−1
(
w + DT

(
z(t) − λ(t)

))
4: z(t+1) := P‖·‖1≤τ

(
Df (t+1) + λ(t+1)

)
5: λ(t+1) := λ(t) + γ

(
Df (t+1) − z(t+1)

)
6: check termination conditions
7: end for
8: return f (tmax)

3.2. Total-Variation Regularization

Formally, the Total-Variation(TV) norm for a function u : Ω→ R is
represented with the help of bounded function φ as

TV (u) , sup
{
u(x) divφ dx : φ ∈ C1

c

(
Ω,Rd

)
, ‖φ‖∞ ≤ 1

}
,

=

∫
Ω

|∇u(x)| dx = ‖∇u(x)‖1.

This norm measures the total change in the derivative of the function
over a finite domain [23]. As a result, regularization with a TV norm
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Fig. 4: Comparison of the reconstruction quality of the scene shown in (a), between (b) the combined frequency setup of [14], (c) the one
frequency at a time setup of [22], and (d) our proposed incremental frequency inversion setup.
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Fig. 5: (a) Simulated underground scene; (b) reconstruction with
the one frequency at a time setup of [22]; (c) and our proposed
incremental frequency inversion method.

promotes piecewise constant approximation of the true model [24].
We adopt the TV regularization in its constrained form, such that,

RTV (f) , δ (TV (f) ≤ τ) , (7)

where δ(·) is an indicator function, and τ is a constraint parameter.
Let D be the finite difference operator that discretizes the gradient,
then TV (f) = ‖Df‖1.

In order to impose the TV norm constraint, we define the
proximal operator:

PTV≤τ (w) , argmin
f

{
1

2
‖f −w‖22 +RTV (f)

}
(8)

which can be evaluated using the alternating direction method of
multipliers (ADMM) [25], as shown in Algorithm 1. The projection
onto the `1 norm described in the step 4 is performed explicitly using
the algorithm described in [26].

4. NUMERICAL EXPERIMENT
In order to evaluate the performance of our proposed method, we
generate two synthetic underground models with relatively large
contrast variation in the object permittivity. In the first experiment,
we consider the underground scene, shown in Figure 4(a), where
maximum permittivity is set to 4. We illuminate the scene with a
flat spectrum pulse occupying the frequency band [100, 800] MHz
with a 100 MHz step. The domain is discretized to a 32 × 32 grid

to cover a 1m×1m area. We compare the recovery performance of
our proposed approach in Figure 4(d) to the combined frequency
approach of [14, 15] in Figure 4(b), and to the sequential one
frequency at a time approach originally proposed in [12] and since
then refined in numerous publications including [22] in Figure 4(c)
with the added modification of incorporating the TV regularization.
In the noise-free setting, our method achieves a reconstruction
signal-to-noise-ratio (SNR) of 31.49dB compared to 20.76dB for
the sequential one-frequency setup and 4.02dB for the combined
frequency setup. In the noisy setting with 20dB SNR
measurements, our method achieves 23.96dB reconstruction SNR
compared to 16.69dB for the sequential one-frequency setup and
4.1dB for the combined frequency setup. Note that we provide here
a comparison with [14] in lieu of first Born approximation [27] and
iterative linearization [28, 29] due to its demonstrated superior
performance in the low contrast regime.

In the second experiment, we simulate the scene shown in
Figure 5(a) with a domain of size 1 × 1 m2 and maximum
permittivity of 100, discretized on a grid of 32 × 32 pixels. The
model contains a water pipe (fwater = 100), and a cavity
(fcavity = 0). Five trans-receivers placed equidistant on a line
x = −0.6 m. The probing pulse occupies a frequency band from 10
MHz to 800 MHz with a 10MHz step. Additive white Gaussian
noise is added to the received measurements to result in 20dB SNR.
For the inversion, we set the λj = 1 for all j and τ to be the
TV-norm of the true model. Figures 5(b)–(d) show the incremental
reconstruction performance of our proposed method at three
recovery stages: 10 MHz, [10, 100] MHz, and [10, 800] MHz. In
this high contrast scenario, none of the previous methods were
capable of recovering the scene as the objective function is highly
nonconvex and the low-frequency reconstruction in Figure 5(b) is
too far from the true model. In this noisy very high contrast setup,
our proposed method achieves 17.68dB reconstruction SNR
compared to 7.4dB for the sequential frequency method [22]

5. CONCLUSION
We developed an incremental frequency inversion framework for
the wave-based underground imaging of high-contrast objects. We
pose the imaging problem as a nonlinear least-squares problem with
total variation regularization and wave-equation constraints. Our
incremental frequency setup allows for the recovery of the relative
permittivity of extremely high contrast objects embedded in
nonhomogeneous media. We demonstrate that our approach
achieves better reconstruction quality, around 11dB improvement in
SNR, compared to state of the art methods for moderate contrast
objects. We also show that our method can recover extremely high
contrast objects, such as water with a relative permittivity of 100,
where existing techniques fail in the recovery. Future work will
feature an analysis of the sensitivity of our approach to the TV
bound τ as well as adaptively estimating τ directly from the data.
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