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ABSTRACT

In this paper, we consider the problem of fusing low spatial resolu-
tion multi-spectral (MS) aerial images with their associated high spa-
tial resolution panchromatic image. To solve this problem, various
methods have been proposed, using either model-based or model-
agnostic algorithms such as deep learning techniques. In this paper,
we aim to utilize more interpretable architectures to solve the MS
fusion problem by integrating existing ideas from image processing
with deep learning. In particular, we develop a signal processing-
inspired learning solution, where we unroll the iterations of the pro-
jected gradient descent (PGD) algorithm, and each iteration contains
a projection operation carried out by a deep convolutional neural
network. We observe that our proposed method provides a new per-
spective on existing deep-learning solutions, and under certain cir-
cumstance it reduces to current black-box deep learning methods.
Our extensive experimental results show significant improvements
of the proposed approach over several baselines.

Index Terms— multi-spectral image fusion, deep learning, pro-
jected gradient descent

1. INTRODUCTION

Multi-spectral (MS) imaging, widely used in remote sensing and its
related areas, allows sensing of images across a wider range of wave-
lengths compared to conventional optical imagers. The bands of in-
terest in MS imaging cover RGB, near infra-red (NIR) and short-
wave IR (SWIR) in general. The advantage of MS imaging lies in
several aspects such as (a) better discrimination of objects with dif-
ferent material properties which may otherwise be very similar in
the RGB bands, and (b) more information gathering capability in the
presence of harsh atmospheric conditions such as haze and fog, as
infra-red waves can travel more easily through these media, com-
pared to visible light.

Multi-spectral sensing presents an interesting challenge. It is
necessary in many applications to have both high spatial and spec-
tral resolutions. However, there is a fundamental trade-off between
the bandwidth of the sensor and the spatial resolution it can have.
High spatial resolution typically can be achieved by panchromatic
(PAN) image covering the visible bands but without rich spectral in-
formation. This leads to the problem of MS image fusion. Given a
set of low resolution MS images obtained at different wavelengths as
well as a high resolution panchromatic image which does not have
spectral information, we would like to fuse these two modes of in-
formation in order to produce a set of images which have both high
spectral and high spatial resolutions.

This work was completed when Suhas Lohit was an intern at Mitsubishi
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MS image fusion is essentially an under-determined ill-posed
problem. To solve this problem, various methods have been pro-
posed, either model-based [1–4] or data-driven methods [5–8].
Model-based methods are generally simple to design and have the-
oretical guarantees but with relative poor performance compared
to data-driven methods, especially deep learning based methods.
On the other hand, purely data-driven methods operate as a black
box and are hence less interpretable. Following recent studies on
model-based deep learning [9–11], we formulate a combination of
model-based and data-driven solution based on deep learning in
order to solve the multi-spectral image fusion problem. We unroll
the iterations of the projected gradient descent (PGD) algorithm,
and replace the projection step of PGD with a convolutional neu-
ral network (CNN). Compared to other existing purely data-driven
techniques, our work is based on well studied signal processing
frameworks and guaranteed to converge to a meaningful point,
and also provides superior performance compared to the various
baselines considered. Our contributions are summarized as follows.

• We unroll the iterations of PGD and use a CNN as the pro-
jection operator of PGD to solve the MS fusion problem. Our
approach provides a signal processing-based perspective with
superior performance and convergence guarantee.

• We learn not only the projection operator CNN with training
data, but also the forward operator to overcome the challenge
of the unknown forward operator in MS image fusion.

• Our method generalizes existing purely data-driven methods.
When the forward operator is the identity operator and with
suitable parameter settings, our method reduces to a purely
deep-learning based method.

2. PRIOR ART

In this section, we briefly review relevant algorithms for multi-
spectral fusion as well as other inverse problems.

Model-based iterative methods: In order to solve ill-posed prob-
lems, there is a rich literature on simple prior models of the desired
signal. In the case of the multi-spectral fusion, priors include spar-
sity in the gradient domain – total-variation regularization, low-rank
models [1, 2], over-complete dictionary learning with regularizer on
the coefficients [3, 4]. These methods are generally simple to design
and have theoretical guarantees. However, in terms of recovery per-
formance as well as computational complexity during testing, these
methods fare poorly compared to purely data-driven methods de-
scribed next.

Purely data-driven approaches: In recent years, the resurgence
of deep learning [5] has led to feed-forward non-iterative approaches
for solving inverse problems in low-level vision including compu-
tational imaging, single-image super-resolution, deblurring [6] and
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multi-spectral fusion [7, 8]. These methods are model-agnostic and
simply learn a mapping from the measurements to the desired signal
in a purely data-driven fashion. Compared to the model-based iter-
ative methods, these methods generally yield superior results, and
are also computationally faster owing to their non-iterative nature (a
feed-forward operation at test time) as well as the ease of implemen-
tation on Graphics Processing Units (GPUs).

Model-based deep learning: Although purely data-driven ap-
proaches using deep learning perform very well compared to model-
based shallow methods, they are less interpretable than the latter.
In order to bridge the gap between understanding and performance,
many methods recently combine iterative methods with the deep
learning. This can be achieved in several ways. Sun et al. first
proposed the ADMM-Net for MRI [9]. Here, the iterations of
ADMM are unrolled and the projection operator as well as the
shrinkage function are learned from data. Chang et al. proposed the
OneNet [10] for inverse problems like super-resolution and restora-
tion. It unrolls the ADMM algorithm such that projection operator
is a deep learning method. More recently, Gupta et al. [11] propose
a similar approach in the case of PGD and also provide theoretical
guarantees for convergence. In this paper, we combine PGD with
deep learning for the problem of multi-spectral image fusion. We
unroll the iterations of PGD such that the projection operator is com-
puted using a trained convolutional neural network (CNN) and all
the parameters are learned end-to-end using a training dataset. This
problem is different from other inverse problems in two aspects – (a)
we are given the pan-chromatic image which acts as important side
information, and (b) the forward operator A is usually unknown.

3. UNROLLING PGD USING A CNN AS THE
PROJECTION OPERATOR

We first consider a general problem where we have measurements
y ∈ Rm of unknowns x ∈ Rn via a forward operator A ∈ Rm×n,
with the goal of recovering x, i.e.

y = Ax. (1)

In real applications, we typically have m < n, leading to an un-
derdetermined linear system with infinite solutions in general. In
order to have a unique solution, we solve a constrained optimization
problem as follows

x∗ = argmin
1

2
||y −Ax||22 s.t. x ∈ C, (2)

where C is the constraint set. In our case, C is the set of feasible
images. Generally, the set C is chosen based on domain knowledge,
e.g., the set of images with small `1 norm of the wavelet coefficients.
A popular approach to solving the above problem in image process-
ing is by employing the PGD algorithm, which consists of two alter-
nating steps:

wk+1 = xk + αAT (y −Axk), (3)

xk+1 = ΠC(w
k+1), (4)

where ΠC is a projection operator onto the set C. The first step in the
above optimization process is gradient descent, which is guaranteed
to reduce the value of the cost function given a suitable value of the
learning rate α. However, the output of the gradient descent step is
not guaranteed to be a feasible point. The second step is to map the
intermediate output from gradient descent to the closest point in the
set of feasible solutions through the projection operator ΠC .

The MS image fusion problem can be formulated as an inverse
problem. Let IP , IL, and IH represent the vectorized versions the
Pan, low resolution MS, and high resolution MS images, respec-
tively. We denote y = (IP ; IL) and x = (IP ; IH). The forward
operator A models the mapping from high resolution to the low res-
olution MS images.

However, there are several challenges to solve this MS image
fusion problem. First, in the case of MS aerial images considered in
this paper (as well as natural images in general), it is difficult to pro-
vide a precise mathematical definition of a feasible set and it is also
unclear what a good approximate to the constraint set is. The good-
ness of approximate constraint set may also depend on the properties
of A. Second, although we know that the forward operator A can
be represented as a combination of blurring and down sampling, the
exact coefficients of the blur kernel are unknown.

In existing methods, some of the widely used hand-crafted pri-
ors include the sparsity priors in wavelet and gradient domains. In
the case of dictionary learning, an over-complete sparsifying basis is
also learned from the data and sparsity priors are used on the coef-
ficients. However, these techniques fall short in terms of providing
high quality solutions and have given way to purely data-driven non-
linear methods using deep learning, as explained in Section 2. A
main drawback of deep learning methods is that they are not easily
interpretable and it is unclear what functions they perform in terms
of signal processing.

Following similar works for compressive imaging, MRI, and
super-resolution, etc., we propose the following framework. We un-
roll the iterations of PGD (Eqs. (3) and (4)), and use a trained CNN
in each step to replace the projection operator. We choose apriori
the number of iterations to unroll and train the entire pipeline end-
to-end. The whole framework is illustrated in Fig. 1. Therefore, al-
though the core architecture of the CNN is hand-crafted, at a higher
level, the algorithm is based on well-studied methods.
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Fig. 1. A single stage of unrolled PGD framework we propose in this
paper. The gradient descent step is carried out as usual and a CNN is
used as the projection operator onto the set of high resolution multi-
spectral images. Note that both forward operator A and the layers in
the CNN are learned end-to-end jointly.

In order to overcome the challenge of unknown A, we explore
two options with either given or learned A.

3.1. Using the denoising formulation i.e., A = I

In practice, we typically formulate the MS fusion problem as an im-
age denoising problem by setting the measurements y to be upsam-
pled low resolution images using bicubic interpolation and setting
A = I for simplicity, where I is the identity filter. We note that
under this new formulation with the learning rate α = 1, we have
wk+1 = y, meaning that the unrolled PGD reduces to a projection
step using a trained CNN. Therefore, this formulation, depending on
the network architecture, reduces to the framework of deep-learning-
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based MS fusion presented in [7] and [8], but using a signal process-
ing methodology.

3.2. Using the general formulation i.e., A is learned

As a natural extension to the above, we investigate the possibility of
jointly learning the forward operator A, the learning rate α and the
CNN. After bicubic interpolation, the low resolution images are of
the same size, albeit blurred versions of the high resolution images.
This suggests modeling A as a blurring operator. We assume that the
same blurring operator, which we represent as a square convolutional
kernel, operates on the entire image as well as on different spectral
channels. We structure the kernel to be of the form

KA = KB + KI, s.t.
S∑

i=1

S∑
j=1

KA(i, j) = 1

KA(i, j) ≥ 0, ∀i, j ∈ {1, . . . , S}, (5)

where the coefficients of KB are learned and KI is the identity filter.
This encourages the 2D filter coefficients to be centrally dominant
and the constraints on KA ensure that the corresponding operator A
is a valid blurring operator. In our experiments, we have chosen the
size of KA to be 9×9. The convolutional kernel as well as the whole
convolutional filters are trained with training datasets by minimizing
the error between the network output and the desired output using
the Adam optimizer [12].

4. EXPERIMENTS

For all our experiments, we use a training dataset of 138 high reso-
lution aerial MS images with 16 channels and a panchromatic image
of size 256 × 256 pixels. These images are synthesized using the
AVIRIS hyper-spectral image database [15]: each MS image chan-
nel is generated by a weighted linear combination of a band of hyper-
spectral images. For training, we also need access to the low resolu-
tion images. The low resolution MS images of size 128 × 128 are
produced by first low-pass filtering (anti-aliasing) and then down-
sampling by a factor of 2 (we focus on 2× super-resolution, however
the method can be extended to other factors).

The test set consists of four low resolution MS images with the
same 16 channels – covering four areas of Moffett, Cambria Fire,
Cuprite, and Los Angeles, respectively – of size 512 × 512 after
interpolation and each with a panchromatic image, also of size 512×
512. During test time, the images are split into overlapping patches
and the fed through the trained networks. As before, we form 256×
256 images of the test set which serve as the input to the algorithm.
Our goal is to fuse the lower resolution MS image with the 512 ×
512 panchromatic image to produce a high resolution MS output of
resolution 512× 512.

As described in Section 3, the projection operator (Eq. (4)) is
learned from training data, and we choose to implement it using a
CNN. Based on the work of Wei et al. [8], the architecture of this
network is simple with 4 layers of convolutions plus Rectified Lin-
ear Units (ReLUs) with a residual connection connecting the bicu-
bic interpolated low resolution MS images (y) to the output of the
penultimate layer of the CNN. We set the the filter size in all layers
to be 9 × 9 and we use 32 feature maps for layers 1 and 2. Layer
3 produces 17 feature maps in order to be compatible with the num-
ber of channels of the input, and the output produces the desired 16
multi-spectral channels.

The low resolution 128 × 128 MS training images are first up-
sampled using bicubic interpolation to match the pixel resolution

of the PAN image, i.e., 256 × 256. Using the 138 pairs of low-
res and high-res training images, we first create a dataset of about
60832 patches (of size 32×32×17) of the interpolated low-res MS
and PAN images which form the input to the fusion algorithm, and
32× 32× 16 high-res multi-spectral images which form the desired
output. About 1800 of these patches are used as the validation set in
order to select the hyperparameters. For the case with A = I, the
PGD algorithm reduces to simply applying the projection operator
(the CNN, in our case) once on the low-res input y, and thus, the
algorithm essentially reduces to the one described by Wei et al. [8].
For this case, we train 3 networks of depths of 4, 12 and 20 layers,
repectively. When A is learned, we also need to choose the num-
ber of iterations, niter of PGD to unroll. We conduct experiments
with niter = 1, 3, 5. The networks are trained using the Adam opti-
mizer [12] for 2× 105 iterations with a batch size of 32. We use the
mean squared error over the batch between the desired high resolu-
tion patches and the output of the algorithm as the loss function. All
the networks are trained using Tensorflow [16] on a GPU.

For comparison, we provide experimental results of the pro-
posed approach with three baseline algorithms: (1) Bicubic interpo-
lation, where the output of the algorithm is the channel-wise upsam-
pling of the lower resolution images using bicubic interpolation, (2)
Shrinkage field (SF) networks by Schmidt and Roth [13] which is a
trainable architecture, but is applied to each channel independently,
and (3) deep Coupled Analysis and Synthesis Dictionary (CASD),
a recent work by Wen et al. [14] which uses channel-wise outputs
from the SF network and a CASD framework in order to exploit the
inter-channel relationship in order to improve fusion results.

The results of multi-spectral fusion on the test images using var-
ious algorithms are shown in Fig. 2 of Cambria Fire and Fig. 3 of
Los Angeles. It is clear that our results are visually much sharper
and preserve better spectral information compared to other results
using existing baseline methods. To quantitatively analyze our re-
sults, we compute both the regressed Peak Signal-to-Noise Ratio
(PSNR) [11] and the structural similarity index (SSIM) [17] to mea-
sure the performance of the algorithms, as shown in Table 1. The
measures are computed channel-wise and averaged over the 16 MS
channels. From the table, we clearly observe that the results us-
ing unrolled PGD are superior to all the baselines considered by 3-
6dB when A = I. Further improvements of 0.6dB on average are
achieved by learning the forward operator A.

As regarding to computational time, we observed empirically
that the validation error converges for the chosen number of itera-
tions and it takes a few hours to train on an Nvidia Titan-X GPU.
For the MS fusion test process, it takes less than a second on the
same GPU with batch processing of all the patches at once.

5. CONCLUSION

In this paper, we developed an unrolled projected gradient descent
(PGD) method for multi-spectral (MS) image fusion, with projection
operator replaced by a trained convolutional neural network (CNN)
to provide superior performance with convergence guarantee. Our
method also generalizes the purely data-driven method by learning
the unknown forward operator simultaneously with the CNN. When
the forward operator is set to be the identity operator, our approach
reduces to a purely data-driven deep learning method. Our exper-
iments show that the learning-the-projection operation outperforms
several baselines considered, and improves the results further with a
learned forward operator.
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Image Name Bicubic Shrinkage Fields [13] DeepCASD [14]

Unrolled PGD
A = I (reduces to [8]) A is learned

Number of Layers Number of Iterations
4 12 20 1 3 5

Moffett 32.24 34.21 34.53 37.44 38.29 37.46 37.59 38.52 38.17
0.4788 0.6981 0.7185 0.9710 0.9768 0.9729 0.9706 0.9778 0.9776

Cambria Fire 35.32 37.51 37.62 37.83 38.91 38.71 37.99 38.91 39.33
0.5887 0.7941 0.7987 0.9734 0.9734 0.9696 0.9775 0.9765 0.9771

Cuprite 32.44 34.33 34.52 36.88 37.56 36.82 37.95 38.56 39.02
0.5060 0.7437 0.7616 0.9750 0.9842 0.9823 0.9794 0.9837 0.9840

Los Angeles 27.96 30.39 30.50 36.27 37.38 37.28 36.42 37.79 37.77
0.4888 0.7628 0.7761 0.9702 0.9755 0.9760 0.9712 0.9777 0.9790

Mean 31.99 34.11 34.29 37.11 38.03 37.57 37.49 38.45 38.57
0.5156 0.7497 0.7637 0.9760 0.9775 0.9752 0.9746 0.9789 0.9794

Table 1. The table shows the experimental results of multi-spectral image fusion in terms of PSNR in dB (the top number in each cell) and
SSIM (the bottom number in each cell) on the test set. Clearly, the results using unrolled PGD are superior to all the baselines considered.
Also observe that the results improve further when A is learned. Note that when A = I, PGD reduces to a single projection operator as in [8].
Then number of layers refers to the number of layers in the projection CNN. In the case where A is learned, the “number of iterations” refers
to the number of steps of PGD we unroll. The CNN in each projection operation contains 4 layers of convolutions plus ReLU.

Bicubic Interpolation Shrinkage Fields Deep CASD PGDCNN : A=I PGDCNN : A is learned Ground Truth

Fig. 2. Visual comparison of results for the “Cambria Fire” image (top row) and the zoomed in portions (bottom row). It is clear that the
unrolled PGD (PGDCNN) provides much sharper spatial resolution and preserves better spectral information compared to the baselines.

Bicubic Interpolation Shrinkage Fields Deep CASD PGDCNN : A=I PGDCNN : A is learned Ground Truth

Fig. 3. Visual comparison of results for the “Los Angeles” image (top row) and the zoomed in portions (bottom row). It is clear that the
unrolled PGD (PGDCNN) provides much sharper spatial resolution and preserves better spectral information compared to the baselines.
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