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ABSTRACT 

 

Imaging through a semi-transparent material such as glass 

often suffers from the reflection problem, which degrades 

the image quality. Reflection removal is a challenging task 

since it is severely ill-posed. Traditional methods, while all 

require long computation time on minimizing different 

objective functions with huge matrices, do not necessarily 

give satisfactory performance. In this paper, we propose a 

novel deep-learning based method to allow fast removal of 

reflection. Similar to the traditional multiple-image 

approaches, the proposed algorithm first captures the multi-

view images of a scene. Then the images are fed to a 

convolutional neural network to obtain the depth 

information along the edges of the image. It is sent to a 

Wasserstein generative adversarial networks (WGAN) for 

estimating the edges of the background. Finally, the 

background edges are used in another WGAN to 

reconstruct the background image. Experimental results 

show that the proposed method can achieve state-of-the-art 

performance, and is significantly faster than the traditional 

methods due to the use of the deep learning methods.  

Index Terms—Reflection removal, Wasserstein 

generative adversarial network, blind image separation 

 

1. INTRODUCTION 

 

Images with the reflection of an unwanted scene are 

acquired frequently in daily lives when imaging through 

semi-transparent material such as glass. It does not only 

degrade the visibility of the desired background but also 

affects the subsequent analyses and applications of the 

images. Various approaches are proposed in the last decades 

for solving this problem. Mathematically, the reflection 

scene 𝐼𝑅 which is superimposed on the background scene 𝐼𝐵 

in the captured image 𝐼 can be modeled as follows:  

𝐼 = 𝐼𝐵 + 𝐼𝑅 . (1) 

To recover 𝐼𝐵  from 𝐼  is a typical blind image separation 

problem. Since there are two variables needed to be solved 

from only one equation, this problem is severely ill-posed. 

Various priors such as the gradient sparsity and the 

assumption that the edges of two layers are seldom 

overlapped [1-4] are adopted to relieve the problem. 

However, with only the observed image, this problem is too 

difficult to solve, as two variables needed to be solved from 

one equation. Methods using multiple images [2-4] and light 

field (LF) images [5, 6] were then developed and they 

showed better performance comparing to the single-image 

based methods. These approaches allow the depth of the 

scene to be evaluated to facilitate the identification of the 

background and reflection, which often locate at different 

distances from the camera. However, if a pixel is the 

superimposition of the background and reflection of 

different depths, the depth of that pixel is ambiguous. 

Furthermore, it is noticed in many practical situations that 

some parts of the background and reflection can share the 

same depth range. Hence just using the depth of a pixel is 

still insufficient to determine if it belongs to the background 

or reflection. In [6], we suggested distinguishing the 

background and reflection through their edges. It is seldom 

that the edges of the background and reflection overlap in 

an image, as they are usually uncorrelated. Besides, we 

suggested excluding the edge points having the depth in the 

range shared by the background and reflection. Rather, they 

are regenerated based on the remaining edge points. 

Although the method in [6] has good performance, it 

requires a long computation time to carry out a few large-

scale optimization processes in the algorithm. 

Quite recently, the learning-based approaches, such as 

deep neural networks (DNN), are also applied to the 

problem of reflection removal [7, 8]. Since these approaches 

are single-image based, it is difficult to find an effective cue 

that can be used to clearly distinguish background and 

reflection in the image. Hence, only some weak priors that 

are not generally true in practice are used for training the 

DNN. For instance, both methods in [7, 8] assume reflection 

images must be blurry, which is not valid in many practical 

situations. Two examples are shown in Fig. 5. In fact, the 

generality of such an assumption is also pointed out in [7]. 

In this paper, we suggest extending the ideas in [6] but 

realizing them using the WGAN. As a branch of DNN, 

generative adversarial networks (GAN) has drawn distinct 

attention recently. It was successfully applied to solve many 

inverse problems such as inpainting [9], super-resolution 

 
Fig. 1. The flow chart of the proposed algorithm.  
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[10], etc. However, the training of GAN is a minimax 

process, which can be unstable and difficult to converge. By 

adopting the Wasserstein distance in the loss function, it is 

shown in [11] that only slight changes to the discriminator 

and loss function are needed to achieve stable and fast 

convergence. The resulting GAN structure is called 

WGAN. The algorithm proposed in this paper follows 

closely with that in [6], but replaces the three most time-

consuming processes in [6] by an edge disparity network, 

edge map network, and edge reconstruction network (as 

shown in Fig. 1) implemented using a convolutional neural 

network (CNN) and two WGANs. Similar to [6], the 

algorithm makes use of the depth of the image edges to 

identify the background. It is a much stronger prior than 

those in [7, 8], hence the robustness of the algorithm is 

improved. The edge points having the depth in the range 

shared by both the background and reflection should be 

excluded. They are regenerated using a WGAN. The strong 

ability of WGAN in synthesizing new data following the 

ground truth’s distribution lets it particularly suitable to the 

edge regeneration task. Experimental results show that the 

proposed algorithm achieves a state-of-the-art performance 

and greatly improve the computation speed.   

 

2. EDGE DISPARITY NETWORK 

 

For most existing multiple-image reflection removal 

methods, the image depth is first computed based on the 

disparity derived from the multiple views of the target 

scene. To obtain multi-view images, we use an LF camera 

for convenience. By means of a lens array, each set of LF 

images contains multiple views of a scene at slightly 

different angles. Estimating the depth information from LF 

images can be time-consuming [12]. Here, we use a CNN to 

estimate the edge depth from LF images. The proposed edge 

disparity network contains 8 convolutional layers. Except 

for the last one, each convolutional layer is followed by a 

batch normalization layer and ReLU. The filter sizes of the 

first, second and last convolutional layers are 25x5x5x256, 

256x5x5x128 and 128x5x5x1, respectively. The 

convolutional layers in the middle are all 128x5x5x128. The 

cost function is based on the reconstruction cost but not the 

depth ground truth, which is hard to obtain. We train the 

CNN by minimizing the following cost function, 

ℒ𝑑 = ∑ ‖𝑀𝑢(𝑥)𝐿(𝑥, 𝑢) − 𝑀𝑢(𝑥)𝐿(𝑥 +𝑢,𝑥

(𝑢 − 𝑢𝑟𝑒𝑓)𝑑(𝑥), 𝑢𝑟𝑒𝑓)‖
2
, 

(2) 

where 𝑑 is the disparity; L is the 4-dimensional LF image; x 

and u represent the spatial and angular coordinates of LF 

respectively; 𝑢𝑟𝑒𝑓  is the reference view we choose for 

reconstructing the background, and 𝑀𝑢  is the gradient 

magnitude map of view 𝑢. It is used to emphasize the edges 

in the cost function. In the testing phase, the input LF 

images are fed to the proposed CNN and generate the depth 

values along the edges in the image (we call it the edge 

depth). Similar to [6], we use the edge depth to generate the 

initial edges of the background and reflection, respectively. 

However, not all background and reflection edge points are 

included as mentioned above. Those edge points with the 

depth values in the range shared by both the background and 

reflection are prone to error, which are excluded from the 

initial background and reflection edges; and regenerate 

them based on the remaining ones by using a WGAN.  

 

3. EDGE MAP NETWORK 

 

3.1 Edge completion using WGAN 

 

The learning process of WGAN can be described as follows: 

min
𝐺

max
𝐷

𝔼𝑥∈𝜒[𝐷(𝑥)] − 𝔼𝑧∈𝒵[𝐷(𝐺(𝑧))], (3) 

where 𝔼  is the expectation operator, 𝐺  and 𝐷  are the 

generator and discriminator, respectively. In (3), 𝐺(𝑧) tries 

to map the input data 𝑧 following the distribution 𝒵 to the 

data 𝑥  following the distribution 𝜒 . The task of the 

discriminator 𝐷 is to distinguish the data 𝐺(𝑧) from the real 

data x. The target is to find a generator 𝐺 that can produce 

fake data that the discriminator 𝐷 cannot distinguish, which 

means that 𝐺(𝑧) must be very close to the data in 𝜒. The 

network architectures of the WGAN used in this study are 

shown in Fig. 2. The generator is constructed using a U-net 

like structure. It is because the encoder-decoder structure of 

U-net, which first shrinks and then interpolates the lost part, 

is suitable to deal with inverse like problems [9]. The 

discriminator contains several convolutional layers but 

(a) Generator network: 

 
(b) Discriminator network: 

 
Fig. 2. The network architectures of WGAN. (a) The generator network. Each down-sampling block represents: 4x4 conv.(stride 2, (stride 4 for the last 
one)) +BN+ReLU+5x5 conv.(stride 1)+BN+ReLU+5x5 conv.(stride 1)+BN+ReLU. Each down-sampling block represents: 4x4 transposed conv.(stride 

2, (stride 4 for the first one))+BN+ReLU+5x5conv.(stride 1)+BN+ReLU+5x5 conv.(stride 1)+BN+ReLU. The purple arrow denotes the concatenation 

operation.  (b) The discriminator network. Each down-sampling block represents: 4x4 conv.(stride 2)+BN+leakyReLU. The number near each block 

represents the channel number of that block. 
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discards the sigmoid operation as suggested in [11]. The 

input 𝑧 contains 𝐸𝑟𝑒𝑓 , 𝐸̂𝐵, and 𝐸̂𝑅, where 𝐸𝑟𝑒𝑓  is the edges 

obtained directly from the image; 𝐸̂𝐵 and 𝐸̂𝑅 are the initial 

background and reflection edges. 

 

3.2 Training of WGAN for edge estimation 

 

For training the proposed WGAN, we prepared a number of 

LF images with known background and reflection ground 

truths. More details of the training samples can be found in 

Section 5. Using the background and reflection ground 

truths, we can also obtain their edges ground truths. Then 

we train the initial generator by minimizing the following 

L2 norm loss function,   

ℒ𝑟𝑒𝑐
𝐸 = ‖𝐺𝐸(𝑧) − 𝐸𝐵‖2

2, (4) 

where  𝐺𝐸  is the output of the generator and 𝐸𝐵  is the 

ground truth background edges. Then, we define two 

adversarial losses which correspond to the discriminators 

𝐷1
𝐸and 𝐷2

𝐸  for discriminating the background and reflection 

edges given by the generator, respectively. The two 

adversarial loss functions are, 

ℒ𝑎𝑑𝑣1

𝐸 = 𝐷1
𝐸(𝐸𝐵) − 𝐷1

𝐸(𝐺𝐸(𝑧)); (5) 

ℒ𝑎𝑑𝑣2

𝐸 = 𝐷2
𝐸(𝐸𝑅) − 𝐷2

𝐸 (𝐸𝑟𝑒𝑓 − 𝐺𝐸(𝑧)), (6) 

where 𝐸𝐵  and 𝐸𝑅  are the ground truth background and 

reflection edges, respectively. We train the discriminators 

𝐷1
𝐸 and 𝐷2

𝐸  by maximizing ℒ𝑎𝑑𝑣1

𝐸  and ℒ𝑎𝑑𝑣2

𝐸 . After 𝐷1
𝐸 and 

𝐷2
𝐸are trained, ℒ𝑎𝑑𝑣1

𝐸  and ℒ𝑎𝑑𝑣2

𝐸  are used to form an overall 

loss function as,  

ℒ𝐸 = ℒ𝑟𝑒𝑐
𝐸 + 𝜆1(ℒ𝑎𝑑𝑣1

𝐸 + ℒ𝑎𝑑𝑣2

𝐸 ), (7) 

where 𝜆1 is the Lagrange multiplier which balances the loss 

terms. Then, we re-train the generator 𝐺𝐸  by minimizing the 

overall loss function ℒ𝐸 . The process iterates until 

converged. In the testing phase, 𝐸𝑟𝑒𝑓 , 𝐸̂𝐵, and 𝐸̂𝑅 are fed to 

the generator to estimate the background edges. A 

background edge mask is also generated by thresholding the 

edges with a threshold 0.05. Fig. 3(c) shows an example 

where the background edges are largely recovered from the 

initial edges (Fig. 3(b)). 

4. BACKGROUND RECONSTRUCTION NETWORK 

 

As indicated in [6], we can reconstruct the background 

image based on the refined background edges. However, the 

complex optimization method used in [6] is extremely time-

consuming. In this paper, we suggest using another WGAN 

to reconstruct the background image to improve the 

computation speed. The WGAN used here has the same 

architecture as in Fig. 2. The inputs are the original image 

(with reflection), the background edges and reflection edges 

obtained from the edge map network. The loss functions 

used are also similar to (4) to (7), except that we further 

enhance the perceptual similarity by adding a perceptual 

loss. The overall loss function is now defined as,  

ℒ𝐵 = ℒ𝑟𝑒𝑐
𝐵 +𝜆2ℒ𝑝

𝐵 + 𝜆3(ℒ𝑎𝑑𝑣1

𝐵 + ℒ𝑎𝑑𝑣2

𝐵 ), (8) 

ℒ𝑟𝑒𝑐
𝐵 = ‖𝐺𝐵(𝑧) − 𝐼𝐵‖2

2, (9) 

ℒ𝑝
𝐵 = ‖𝑉(𝐺𝐵(𝑧)) − 𝑉(𝐼𝐵)‖

2

2
; (10) 

ℒ𝑎𝑑𝑣1

𝐵 = 𝐷1
𝐵(𝐼𝐵) − 𝐷1

𝐵(𝐺𝐵(𝑧)); (11) 

ℒ𝑎𝑑𝑣2

𝐵 = 𝐷2
𝐵(𝐼𝑅) −𝐷2

𝐵(𝐼 − 𝐺𝐵(𝑧)). (12) 

𝐺𝐵, 𝐷1
𝐵 , 𝐷2

𝐵are the generator of the background image, the 

discriminators for the background and reflection images 

respectively. 𝐼 , 𝐼𝐵  and 𝐼𝑅  are the original, ground truth 

background and reflection images, respectively. 𝑉 

represents the perceptual loss which is the response of the 

first 14 layers of the VGG-16 model. As pointed out in [14], 

adding the intermediate response of a pre-trained model to 

the loss function can improve the perceptual similarity 

between the reconstructed image and the ground truth. A 

reconstruction example is shown in Fig. 3(d). We can see 

that the background image is well reconstructed according 

to the edge mask (Fig. 3(c)). The result can be further 

enhanced by inputting the strong edges of the reconstructed 

background to the networks again. Fig. 3(e) and (f) show 

how the edge map and reconstructed background image are 

further enhanced. All the edge maps in Fig. 3 are obtained 

by thresholding the edge magnitudes with a constant 0.05.  

 

5. EXPERIMENTS AND EVALUATION 
 

5.1 Dataset and training details 
 

For training the different DNNs used in the proposed 

algorithm, we need many multi-view images with 

reflection and their background ground truth. To simplify 

the experiment, we make use of LF images since every LF 

image contains multiple views of a scene. Since it is 

difficult to obtain the background ground truths of real LF 

images (with reflection), we synthesize the required images 

by superimposing two sets of LF images with different 

weightings. We capture 318 LF images from different 

scenes using a Lytro Illum LF camera and resize them to 

256x256 pixels. We divide them into two sets and 

randomly superimpose them such that 112,225 different 

training samples are obtained. The training image samples 

can be further augmented using different superimposition 

coefficients and flipping. We train the edge disparity 

           
                  (a)                                (b)                                (c)  

           
                  (d)                                (e)                                (f) 

Fig. 3. (a) The original image; (b) the initial incomplete background edge 
map; (c) the refined background edge map; (d) the reconstructed 

background using the edges indicated by (c); (e) the enhanced background 

edge map by selecting the strong edges of (d); (f) further enhanced 

background using the edges indicated by (e). 
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network using ADAM [15] with learning rate 2 × 10−5 , 

𝛽1 = 0.9 and 𝛽2 = 0.999. For the edge map network and 

background reconstruction network, we use RMSprop [16] 

instead of ADAM as suggested in WGAN [11]. The 

learning rates of the generator and discriminators are 

2 × 10−4  and 2 × 10−5  respectively. The networks are 

trained sequentially for avoiding overfitting. The 

parameters 𝜆1, 𝜆2, and 𝜆3, in the loss functions are set as 

2.5 × 10−3 , 1.25 and 4.4 × 10−3  respectively. We train 

the networks on a desktop computer using a GTX 1080 Ti.  
 

5.2 Performance and computation speed 
 

To evaluate the performance of the proposed approach, we 

compare it with four recent methods, LS-LFGS [6], LS-DS 

[5], LS-SIFTF [3], CEILNet [8] and PLNet [7]. LS-LFGS 

is our previously proposed method. LS-SIFTF and LS-DS 

are two traditional methods using multiple images and LF 

images respectively. CEILNet and PLNet are DNN based 

methods. We quantitatively evaluate the performance of 

these methods by using 10 images. Each image is the 

superimposition of two images, which mimic the 

background and reflection. Since the ground truth of each 

image is known, we can evaluate the PSNR of the 

recovered background. The average results are shown in 

Table I, which shows that the proposed algorithm 

significantly outperforms the other approaches. When 

comparing with other DNN based methods, the proposed 

algorithm can reconstruct the background edges by 

exploiting the edge depth information based on multiple-

image. For qualitative evaluation, we show the results of 

two real cases in Fig. 5. It can be seen that the proposed 

algorithm significantly outperforms LS-SIFTF, LS-DS, 

CEILNet and PLNet. Table I also shows the average 

running times for processing five 256x256 real-life images. 

The proposed method is faster than the other non-DNN 

approaches, including [6], by an order of magnitude. 
  

6. CONCLUSION 
  

In this paper, a novel learning-based method for solving the 

depth-based reflection removal problem is proposed. The 

new approach uses a CNN to estimate the depth of the 

image edges, and two WGANs to recover the background 

edges and reconstruct the background image. Experimental 

results show that the proposed algorithm can give state-of-

the-art performance. Furthermore, it takes advantage of the 

massively parallel structure of the different deep neural 

networks used in the algorithm such that much faster speed 

is achieved when computing with GPU.  
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Fig. 4. The images used in the quantitative evaluation. 

Method  Background results Ave. Time 

Original images 13.09 NA 

LS-LFGS [6] 21.71 69.51s 

LS-SIFTF [3] 18.91 130.59s 

LS-DS [5] 18.85 17.01s 

CEILNet [8] 17.71 0.82s 

PLNet [7] 19.09 1.15s 

Proposed  24.22 1.08s 

Table I. The average execution times and PSNR values of the resulting 

images generated by different methods with respect to their ground truths. 

The mean values of all the results are adjusted to that of the ground truth 

for the ease of comparison, as different biases exist in these approaches. 

 

                               
 

                                                            
 

                               
 

                                                            
          Original images           LS-LFGS results    LS-STFTF results      LS-DS results       CEILNet results      PLNet results       Proposed method       

 

Fig. 5. A comparison of the background (upper row) and reflection (lower row) images generated by different methods for two real image cases. 
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