
NEAR-OPTIMAL CODED APERTURES FOR IMAGING VIA NAZAROV’S THEOREM

Ganesh Ajjanagadde? Christos Thrampoulidis† Adam Yedidia? Gregory Wornell?

?Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
†Department of Electrical and Computer Engineering, University of California, Santa Barbara

ABSTRACT

We characterize the fundamental limits of coded aperture imaging
systems up to universal constants by drawing upon a theorem of
Nazarov regarding Fourier transforms. Our work is performed un-
der a simple propagation and sensor model that accounts for thermal
and shot noise, scene correlation, and exposure time. Focusing on
mean square error as a measure of linear reconstruction quality, we
show that appropriate application of a theorem of Nazarov leads to
essentially optimal coded apertures, up to a constant multiplicative
factor in exposure time. Additionally, we develop a heuristically ef-
ficient algorithm to generate such patterns that explicitly takes into
account scene correlations. This algorithm finds apertures that corre-
spond to local optima of a certain potential on the hypercube, yet are
guaranteed to be tight. Finally, for i.i.d. scenes, we show improve-
ments upon prior work by using spectrally flat sequences with bias.
The development focuses on 1D apertures for conceptual clarity; the
natural generalizations to 2D are also discussed.

Index Terms— coded aperture cameras, computational photog-
raphy, optical signal processing, Fourier analysis

1. INTRODUCTION

Certain modern imaging systems, especially those operating at high
frequencies, use coded apertures. In these systems, a spatial mask
that selectively blocks light from reaching the sensor is used as op-
posed to a traditional lens. The scene is then recovered by suitable
post-processing. Perhaps the earliest and simplest instance of coded
aperture imaging is the pinhole structure; see, e.g., [1] for a survey.
The development of X-ray and gamma-ray astronomy gave rise to
more sophisticated coded apertures [2, 3] to get around the lack of
lenses and mirrors in such settings. Both proposed using random
blockage patterns with a specified mean transmittance as a method
to increase the aperture size as compared to the classical pinhole
while retaining its resolution benefits.

More modern developments include the usage of uniformly re-
dundant arrays (URA) to improve upon random on-off patterns [4],
anti-pinhole imaging [5], as well as the combining of mask and
lens in order to, e.g., facilitate depth estimation [6], deblur out-
of-focus elements in an image [7], enable motion deblurring [8],
and/or recover 4D lightfields [9]. Even more recent work seeks
to forgo lenses altogether to decrease costs and meet physical con-
straints [10, 11]. Understanding coded apertures is also relevant in
non-line-of-sight applications where masks naturally occur as scene
occlusions [12, 13].

In light of the increased importance of coded apertures, prior
work [14] described a model under which they can be analyzed.
This model uses far-field geometric optics to model light propaga-
tion and a sensor model that includes thermal and shot noise com-
ponents. Together with mutual information (MI) as a performance
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metric, [14] compared the classical random on-off apertures [2, 3]
of varying intensity to the “spectrally flat” patterns with transmissiv-
ity 1/2 (same as the URA of [4]). Among other things, the analy-
sis showed that when shot noise dominates thermal noise, randomly
generated masks with lower transmissivity than 1/2 offered greater
performance compared to spectrally flat patterns of transmissivity
1/2.

This paper extends the work of [14] in multiple respects that may
be broadly grouped into the following three main contributions.

First, we refine the model of [14] by incorporating exposure
time. Here, we analyze linearly-constrained minimum mean square
error (LMMSE) estimatation as opposed to MI given its direct oper-
ational relevance, though we remark in advance that our conclusions
carry over to the MI criterion used in [14]; see Sec. 4.

Second, we remark upon the existence and construction of spec-
trally flat sequences with transmissivities 1/8, 1/4 in addition to
1/2. This extends the range of parameters where we have a sharp
characterization of optimal coded apertures in our framework, and
gives a tight answer to the problem of optimal coded apertures for
i.i.d. scenes; see Props. 2, 3 for precise statements.

Third, we provide optimal (up to a universal constant) coded
apertures, both in 1D as well as in 2D, applicable for any prior on
the spectrum of the scene at hand. The sense of tightness of the
optimality is given precisely in Prop. 4. This includes (but is not
limited to) the naturally occuring power law [15](f−γ-prior). Our
aperture design naturally varies depending on the choice of prior,
and we provide a (heuristically) efficient greedy algorithm for their
generation. Essentially all the required mathematical results stem
from a beautiful theorem of Nazarov [16, p. 5] combined with clas-
sical waterfilling for spectrum allocation. We note that [17, pp. 9-11]
has identified other applied problems for which Nazarov’s theorem
provides conceptual clarity and/or solutions.

2. MODEL

We first describe our model, and discuss how it differs from that in
[14]. We use the standard Poisson model of classical optics for pho-
ton counting, and emphasize its dependence on the exposure time t.
The analysis of MI under Poisson models is cumbersome, and even
with mean square error (MSE) it is often unclear how to achieve op-
timal MSE in practice. As such, the standard estimation process is
linear; indeed, the work of [2, 3] used correlation decoders. In fact,
both [2, 3] give beautiful analog realizations of such a decoder. Ac-
cordingly, we emphasize LMMSE. We note that if one used a Gaus-
sian model instead, LMMSE is the same as MSE, and MSE is in turn
essentially equivalent to MI in the low SNR limit [18, 19]. LMMSE
depends purely on first and second moments, so in our mathematical
study we do not emphasize the specific Poisson statistics.

We use a 1D model, as in [14], to simplify the exposition of
the concepts and results. We emphasize that all of the results of
this paper generalize naturally to the analogous 2D model, whose
discussion we defer to Sec. 4.
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Let f denote the intensities of the unknown 1D scene of length
n of expected total power J . Let E[f ] = (J/n)1,Cov[f ] = Q. We
assume Q is circulant and diagonalized as Q = F∗nDFn; Fn is the
unitary discrete Fourier transform (DFT) matrix and D = diag(d).
The measurements at the imaging plane are denoted yj , j ∈ [n]
and the n × n transfer matrix A models the aperture. We assume
its entries all satisfy 0 ≤ Aji ≤ 1/n to model that the light can
not be redirected, and

∑
j Aji ≤ 1 to model local conservation of

power. An ideal, perfectly focused, lens may be treated in this setup
by A = I, as it redirects light perfectly.

We assume Aji = (1/n)ai−j (mod n) for a a ≥ 0, i.e. A
is circulant. Let ρ(a) = (1/n)

∑
i ai be the transmissivity of the

aperture. The noise component is denoted by z and its statistics
are given by E[z] = 0,Cov[z] = (t(W + Jρ)/n)I, where W,J
correspond to thermal and shot noise respectively, and t is the ex-
posure time. With these, our measurement model is then given by
yj = t

∑
iAjifi + zj , which leads to the following expression for

the LMMSE of estimating f from y:

m(n, t,W, J,d,a) =

n−1∑
i=0

1
1
di

+ t|âi|2
n(W+Jρ(a))

. (1)

Here, â is the DFT of a. In general, we assume di = (1/n)d(i/n)
are n equally spaced samples from a nonnegative, bounded, contin-
uous function d(x) on [0, 1] with symmetry d(x) = d(1 − x) and
normalized so that d(0) = θ. For example, i.i.d. scenes correspond
to d(x) = θ. We note that our main result, Prop. 4, holds in greater
generality. The above restriction on the form of d simply ensures
correct physical scaling (invariant with respect to n) of the variance
of total scene intensity coming from an arbitrary direction.

It is instructive to compare an ideal lens to a mask with respect
to (1), as a function of exposure time. An ideal lens satisfies A = I,
(i.e., a = (n, 0, . . . , 0)). Thus â = (n, n, . . . , n). Then from (1), it
can be readily seen that for a t growing with n (say t = log(n)), the
LMMSE decays to 0 as n → ∞. On the other hand, the entry-wise
restriction a ∈ [0, 1] that holds for a mask results in a significant
reduction in ‖â‖2. Due to this, in order to get an LMMSE that is
bounded away from the trivial

∫
d(x) dx, one needs an exposure

time that is Ω(n). Of course, this is not surprising; there are strong
benefits to lenses when they are available. The need for long expo-
sure times for coded apertures is also a known phenomenon, consis-
tent with the emphasis of [3] on “hypothesis tests” between scenes
as opposed to resolving full detail.

One way to interpret increased t is that it reduces noise relative
to the signal. All our main results established in the sequel ( eqs. (3)
to (5)) show that one can construct apertures that are guaranteed to
be tight within a constant factor of t. Under the above interpretation,
what we establish rigorously is that our results are tight to within a
universal constant number (≈ 18.30) of dB, regardless of the scene
correlation structure given by d. This factor may be read off from
2M(n)2 of Prop. 4.

3. RESULTS

The goal of optimal aperture design (aka optimal a) is to minimize
the LMMSE formula subject to the scene model, denoted as follows:

m∗(n, t,W, J,d) , min
a
m(n, t,W, J,d,a).

Let us first understand why the minimization above is a chal-
lenging problem. Consider the even simpler problem in which the
optimal transmissivity, say ρ0, is given to us. Then, although a ∈
[0, 1], ρ(a) = ρ0 is a convex constraint, the LMMSE (1) which

we wish to minimize is neither convex nor quasiconvex in a, since
1/(1 + cx2) lacks any of these behaviors.

In order to solve this problem, our general approach is as fol-
lows. First, we use Parseval’s identity that relates time and frequency
space. Under a fixed power budget, it is easy to solve for the optimal
spectrum allocation |âi|2 by studying the well-behaved and convex
1/(1 + cx) that has a solution given by waterfilling (2). Next, we
are faced with the “coefficient problem” of finding a a ∈ [0, 1] with
given spectrum allocation. To address this, we appropriately apply
a theorem of Nazarov [16, p. 5]. An exposition of Nazarov’s work
together with the context he draws from (e.g., the geometric ideas
of [20], along with the analytic ideas of [21]) may be found in [22].

3.1. Lower bound

We first derive a lower bound for LMMSE (1) based on waterfill-
ing (see, e.g., [23, Thm 19.7]). For notational ease, we let γ =
t/(n(W + Jρ)) throughout.

Proposition 1. Let a satisfy ρ(a) = ρ. Then:

m(n, t,W, J,d,a) ≥ 1
n
θ

+ γn2ρ2
+

n−1∑
i=1

1
1
di

+ γPi
. (2)

Here Pi = (1/γ)(T − 1/di)
+ and total power P =

∑n−1
i=1 Pi =

n(bnρc+ (nρ− bnρc)2)− n2ρ2. Also note P ≤ n2ρ(1− ρ). We
remark that (2) is sharp if and only if |âi|2 = Pi for 0 < i < n.

Proof. We have â0 = nρ, giving the first term. For the nonzero
frequencies, we use the fact that the maximum of

∑
i x

2
i subjected

to xi ∈ [0, 1] and
∑
xi = r is brc + (r − brc)2. This, together

with Parseval’s identity, yields an upper bound on the power of the
nonzero frequencies. Waterfilling, modified to study −1

1+ax
as op-

posed to log(1 + ax), then gives the proposition. The floors are
removed to get the P upper bound by x2 ≤ x for 0 ≤ x ≤ 1.

Note that minimizing the right hand side over ρ gives a lower
bound on m∗(n, t,W, J,d). This task is trivial numerically, but in
general difficult analytically. We denote this optimal ρ by ρ∗ hence-
forth.

3.2. Upper bound

Our goal here has been set from (2). Conceptually, the design issue
is finding a a ∈ [0, 1] with prescribed lower bounds |âi|2 ≥ Pi. In
general, this is impossible to do, and thus our lower bound (2) is not
sharp in all settings. However, it should be noted that sharp cases do
exist. Perhaps the conceptually simplest example is the analog of (2)
for a lens, where our bound is sharp.

Our general approach is to simply step back by a factor C and
obtain a a ∈ [0, 1] with |âi|2 ≥ Pi/C. What we do next is address
how we can guarantee such a C. We shall move from simpler to
more complex situations, and accordingly start off with i.i.d. scenes
where for infinitely many n one does not need the full generality of
Nazarov’s solution.

3.2.1. i.i.d. scenes

Recalling that d(x) = θ is constant, the waterfilling asks for a 0, 1
sequence with uniform spectrum allocation after the DC term (“spec-
trally flat sequences”). As already noted in [4, 14], one can certainly
construct such spectrally flat sequences for infinitely many values of
n, as long as they are “unbiased” with ρ = 1/2 − o(1). This meets
the lower bound (as n→∞) as long as the optimal ρ∗ is 1/2−o(1)
for the given t,W, J . A natural question is how good is using an
“unbiased” spectrally flat sequence when ρ∗ 6= 1/2? The answer is
given in the following:
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Proposition 2. Let θ,W, J be fixed and let d = (θ/n)1. Then for
infinitely many n, there exists a a ∈ [0, 1] such that:

m(n, 2t,W, J,d,a) ≤ m∗(n, t,W, J,d). (3)

In other words, “unbiased” spectrally flat sequences are always
guaranteed to achieve optimal LMMSE at the expense of increasing
the exposure time t by a factor of at most 2. In the sequel, we show
how one can reduce this factor even further.

This is achieved by using spectrally flat sequences with ρ =
1/8−o(1) and ρ = 1/4−o(1), and allows us to refine 2 to 8/7. The
construction of these is based on well-established cyclotomic num-
ber computations [24, Art. 356] in number theory: 1/4 corresponds
to quartic residues [25], and 1/8 corresponds to octic residues [26].
It should be emphasized, however, that in contrast to the case in
which ρ = 1/2, the existence of such sequences for infinitely many
values of n is not guaranteed, because no single-variable quadratic
taking on infinitely many primes is known [27].

Of perhaps greater importance is the fact that the octic residue
constructions of [26] rely upon primes that come from a second order
linear recurrence with rather large coefficients, arising as the solu-
tions of Brahmagupta-Pell equations. There is thus a paucity of such
constructions, indeed [26] gives only two such n below 109, namely
n = 73 and n = 26041. On the other hand, the quartic residue con-
structions are reasonably numerous, with over 150 of them available
below 107. Even restricting ourselves to the quartic residues allows
us to tighten from 2 to 4/3. Summarizing all of the above, we have:

Proposition 3. Let θ,W, J be fixed and let d = (θ/n)1. Then
for some values of n that exist even beyond, e.g., 109, there exists a
a ∈ [0, 1] such that:

m(n, (8/7)t,W, J,d,a) ≤ m∗(n, t,W, J,d). (4a)

Moreover, for many (> 150 for n < 107) values of n that exist even
beyond, e.g., 109, there exists a a ∈ [0, 1] such that:

m(n, (4/3)t,W, J,d,a) ≤ m∗(n, t,W, J,d). (4b)

Proof of Props. 2, 3. The “difference sets” of [25, 26] are in our
language spectrally flat sequences. The constant factor is given
by the following single variable optimization. In view of (2), let
fa(ρ) = (ρ(1 − ρ))/(a + ρ) defined on [0, 1]; a corresponds to
W/J . The numerator comes from the power bound, the denomina-
tor from the noise penalty. Then, M(a, ρ) = (supx fa(x))/(fa(ρ))
is the multiplicative loss factor for a fixed W/J and fixed ρ ∈
{0.125, 0.25, 0.5}. One may then optimize over ρ, a to get the con-
stant (4a). This proof, modified to ρ ∈ {0.25, 0.5} and ρ ∈ {0.5},
also yields (4b) and (3) respectively. The fact that there are infinitely
many n for ρ = 0.5− o(1) follows from the quadratic residue con-
struction together with the well known fact that there are infinitely
many primes p = 4k + 3 (see, e.g., [28, Chap 7]).
3.2.2. Correlated scenes

We now turn to correlated scenes. Here the waterfilling is nontrivial,
and asks for an unequal spectrum allocation. We therefore invoke
Nazarov’s solution to the coefficient problem [16, p. 5], and provide
a statement here specialized to the DFT and l∞ that we use.

First, some notation. Let us define inner products with respect
to the uniform probability distribution on {0, 1, . . . , n − 1}. Let
0 ≤ i, j ≤ n − 1, and let ψj be a orthonormal basis for the DFT
on real sequences. Explicitly, let h = d(n− 1)/2e. Let ψ0(i) = 1,
ψj(i) =

√
2 cos(ωji) for 0 < j < h, ψj(i) =

√
2 sin(ωji) for

h < j < n. If n is even, let ψh(i) = cos(ωhi), otherwise ψh(i) =√
2 cos(ωhi). Finally, let β(n) = minj |ψj |1.

Theorem 1 (Nazarov). Let M(n) = ((3π)/2)β(n)−2. Let 0 ≤
p0, p1, . . . , pn−1 be such that

∑
pj = 1. Then there exists a b ∈

[−M(n),M(n)] with |(b, ψj)|2 ≥ pj for all 0 ≤ j ≤ n− 1.

With 1 in hand, we are able to reach a far more general version of
Prop. 2, 3 valid for any n and any scene prior d. Also, in Sec. 3.3 we
show how to actually construct such tight sequences whose existence
is guaranteed by 1.
Proposition 4. For all n, t,W, J,d, there exists a a ∈ [0, 1] such
that:

m(n, 2M(n)2t,W, J,d,a) ≤ m∗(n, t,W, J,d). (5)

Furthermore, we have:
M(n) ∈ [(3π3)/16 + o(1), 3π + o(1)]. (6)

The justification of the tightness of (5) lies in establishing (6),
which we do first. The phenomenon is captured by the factoriza-
tion of n, with the best, that is the largest, β occurring for n prime,
and the worst occuring for n divisible by 4. We have the following
Lemma which establishes (6):

Lemma 1. β(n) ∈
[

1√
2

+ o(1), 2
√
2

π
+ o(1)

]
as n → ∞. More-

over, if we restrict to n being prime, β(n) = 2
√
2

π
+ o(1).

Proof sketch. We give a full proof for the n = p prime case.
Then, for any j 6= 0, ij sweeps over {0, 1, . . . , p − 1}, modulo
p. Thus, really one is looking at a Riemann sum approximation
to

∫ 1

0
| cos(2πx)|dx = 2/π. The l2 norm of cos(2πx) on [0, 1]

is 1/
√

2, completing the prime case. The composite case is more
involved, as it needs to take into account the divisor structure of
n, which prevents such symmetry of the cosine vectors. Once ac-
counted for, the natural idea is to use Euler-Maclaurin summation,
with standard modifications by, e.g., mollifiers to take into account
the lack of smoothness of | cos(x)| at its zeros. However, the me-
chanics are perhaps simplest in our specific setting when one uses
short quadratic splines around the zeros to get a C1 approximation
of any desired accuracy to | cos(x)| while not changing the uniform
derivative bound. We omit a full proof due to space constraints; see,
e.g., [29] for the mechanics of how this is done in general.

We emphasize that by Lemma 1 M(n) ≤ C for some univer-
sal constant C ≈ 9.4248, with even better values available at, e.g.,
prime n > 100. There, C ≈ 5.8146 suffices.

Proof of Prop. 4. Thm. 1, with p0 = 0 and pj = Pj/
∑
j Pj for

0 < j < n yields a b with |b|∞ ≤ M(n) and |(b, ψj)|2 ≥ pj for
0 < j < n. Without loss, we may assume that (b, ψ0) ≤ 0, else
simply flip signs. Stitching the ψj back to complex exponentials
and recalling the upper bound P ≤ n2ρ(1 − ρ), this gives |b̂j |2 ≥
Pj/(ρ(1 − ρ)). Consider a = (b + M(n))/2M(n). Then, a ∈
[0, 1], ρ(a) ≤ 0.5, and |âj |2 ≥ Pj/(4M(n)2ρ(1 − ρ)) for 0 <
j < n. We are now in a similar situation to that of Prop. 2, except
with an extra M(n)2 factor, and the fact that ρ(a) ≤ 0.5 instead of
ρ(a) = 0.5 + o(1). The latter is no problem, as lower ρ only helps
us with the shot noise term, and the former simply multiplies the 2
of (3) by M(n)2.

3.3. Greedy algorithm

Here we propose a (heuristically) efficient algorithm to construct
vectors a that satisfy the conditions of Prop. 4. This algorithm has
its roots in Nazarov’s original proof. At a high level, Nazarov’s the-
oretical construction boils down to finding a “sign cortège” [16, p.
6] that is globally optimal for a certain real-valued Boolean function
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of n signs, taking exponential time in the worst case. However, a
closer examination of Nazarov’s proof reveals that one simply needs
a sign cortège that is locally optimal in the sense of Hamming ge-
ometry for the proof to work. Our observation suggests a natural
greedy algorithm where one starts with a random cortège, and then
flips one sign at a time if it improves the objective, repeating until no
further improvement is possible. In our simulations 1 this runs very
fast. For example, on our standard laptop, we can generate apertures
for n = 2000 in 4 seconds. This superficially resembles the situa-
tion of the simplex algorithm and the smoothed analysis of [30], or
more directly recent work on max-cut [31]. Direct application of the
methods of [31] to obtain theoretical guarantees runs into difficul-
ties with the nonlinear change in objective with a single bit flip in
our setting, unlike the linear change for max-cut. As such, we defer
theoretical study of the greedy algorithm given here to future work.

3.4. Simulations
We give a simple illustration in Fig. 1 which confirms the following
intuition based on our main results eqs. (3) to (5). With an i.i.d. scene
prior, one would prefer using the spectrally flat construction as op-
posed to the one coming from Nazarov’s theorem due to the smaller
constant. On the other hand, with a strong prior—e.g., a bandlimited
one—the waterfilling becomes highly skewed, and one would favor
the one coming from Nazarov’s theorem as it takes into account such
strong skewing of the desired spectrum. For completeness, we also
include the performance of a random on-off sequence with density
ρ [14], where ρ is optimized over [0, 1] for each t.

4. DISCUSSION AND FUTURE WORK

Our refined analysis of a model drawing heavily from [14] yields
tight conclusions across all scene correlation patterns and noise
regimes, with sharp conclusions available in some specific scenar-
ios. Moreover, we give heuristically efficient algorithms for the
generation of optimal coded apertures. We also note that similar
conclusions to our main results eqs. (3) to (5) also hold for MI
and Gaussian statistics of [14], simply because of the form of the
expression for MI.

Furthermore, we note that our conclusions generalize naturally
to 2D apertures, and in particular we have a tight characterization
of optimal coded apertures in that setting. Concretely, one simply
needs to take β(n)2 as opposed to β(n) due to the squaring of the
l1 lower bound for the 2D DFT. The rest of the analysis of Thm. 1
and Prop. 4 carries over naturally, with the orthogonal basis provided
by products of ψj . We emphasize that this works regardless of the
scene prior, even ones which are not separable. With an i.i.d. prior,
separable apertures are optimal up to constants as in 1D, and in fact
taking a product of spectrally flat apertures yields natural analogs
of Props. 2, 3. However, with other priors, it seems like one needs
the generality provided by Thm. 1. This work thus also answers the
question of 2D apertures raised in [14]. We also view experimental
verification of these ideas as a worthwhile task.

As noted in [14], [9] raises the question of whether continuous-
valued masks perform better than binary-valued ones. This work
sheds some light on this: the solution of Nazarov which we
have shown is tight does seem to use the flexibility of the l∞
norm in an essential way; see, e.g., [32, p. 12] for more on
this. And more specifically, we have numerical evidence for
finite n; to give a concrete example, for n = 13, the mask
[1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0] has optimal LMMSE for an i.i.d.
scene over binary-valued masks for ρ = 6/13, θ = 0.01,W = J =
0.001, t = 130, but is improved upon by the continuous-valued

1Code:https://github.com/gajjanag/apertures
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(b) bandlimited prior (d(x) = θ for 0 ≤ x ≤ s− r, 0 for
x ≥ s+ r, and θ(s+ r − x)/(2r) otherwise for 0 ≤ x ≤ 1/2)

Fig. 1. n = 677, θ = 1,W = J = 0.001, s = 0.02, r = 0.005.
We use the quartic residue construction for spectrally flat. Jagged-
ness of the Nazarov plot comes from the fact that in general the spec-
trum allocation varies with t and we randomly seed the sign cortège.

mask whose first entry is equal to ε and whose ith entry is equal to
1 − ε/6 if i − 1 is a quadratic residue modulo 13, and 0 otherwise,
for 0.26 ≤ ε ≤ 0.34.

Although Prop. 4 shows universal tightness across all priors,
even “extreme” ones like bandlimited ones, the constant is worse
than that for a spectrally flat construction for i.i.d. scenes. The better
performance of spectrally flat constructions over the ones inspired
by Nazarov’s theorem seems to extend to other “natural” priors like
the f−γ one, as the waterfilling still yields something that is nearly
“flat”. It might be interesting to quantify and understand the “flat-
ness” of the waterfilling for “natural” priors.

One issue that we have not addressed here or in [14] is the equal
scaling of n at both sensor and scene. One natural way to address
this is letting A be m × n, or alternatively one could study a con-
tinuous model. Another issue is obtaining a good understanding of
mask/lens combinations. This will require not only updates to the
simple propagation model studied here and in [14], but also a refined
understanding of the cost tradeoffs between lenses and apertures.

Stepping back from imaging problems, one may ask the question
of where else Nazarov’s theorem can be used in applied contexts,
something also raised implicitly in [17]. For example, as Nazarov’s
theorem does not care about orthogonality, but merely a l2 estimate
like Parseval’s theorem, one can use it for frames as well as bases,
or for anything satisfying a restricted isometry property. Another
example is the fact that we merely use the l∞ case of his theorem
which works for all lp spaces.
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