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ABSTRACT

Coded aperture compressive spectral imagers allow sensing a three-
dimensional (3D) data cube by using two-dimensional (2D) projec-
tions of the coded and spectrally dispersed source. The traditional
block-unblock coded apertures have been recently replaced by pat-
terned optical filter arrays, allowing to modulate the spatial and spec-
tral information. The real implementation of these patterned or “col-
ored” coded apertures in terms of cost and complexity, directly de-
pends on the number of filters to be used as well as the number of
snapshots to be captured. This paper introduces a coded aperture
optimization having in consideration these restrictions, the final de-
sign obtained is a moving colored coded aperture, which improves
the reconstruction quality of the data cube and is physically imple-
mentable. Simulations show the accuracy and performance achieved
with the proposed approach yielding up to 3 dB gain in PSNR over
the current literature designs.

Index Terms— Spectral imaging, coded aperture optimization,
patterned optical filter arrays.

1. INTRODUCTION

Coded aperture compressive spectral imagers capture three-di-
mensional scenes by two-dimensional projections, multiplexing
the spatio-spectral information of the scene through a coded aper-
ture (CA), and a dispersive element. Many compressive spectral
imaging (CSI) systems have been developed following this frame-
work, however all of them share the attempt to perform a direct 2D
measurement, achieving a mapping of each point of the scene to a
single point in the optical sensor [1].

The CA can be implemented by a photomask with a permeabil-
ity to block or let pass the light for certain spectral bands. The CA
patterns have been usually modeled as matrices, whose entries are
realizations of a Bernoulli random variable, Hadamard matrices, S-
matrices and cyclic S matrices obtained by cyclic permutations of a
codeword, and these distributions have shown to obtain good recon-
structions, and have been widely used [2, 3, 4]. In addition to the
use of these distributions, different approaches have been reported
in which the authors attempt to find an optimal structure for the CA,
not only to increase the reconstruction quality, but to take fewer mea-
surements, revealing the benefits of optimal sampling applied in con-
junction with compressive sensing [5, 6, 7, 8, 9, 10, 11]. Approaches
using singular value decomposition [5, 12], genetic algorithms [6],
adaptive schemes [13, 14], shrinkage methods [5], computational-
based [15, 16], among others approaches [17, 18, 19] have been
proposed. Although gradient-based methods has been successfully

Fig. 1. Physical sensing phenomena in colored CASSI. L spectral
bands of the data cube F are coded spatially and spectrally by a
moving colored coded aperture, and dispersed by the prism. The de-
tector captures the intensity g by integrating the coded and dispersed
light.

used, there is no report of its use for the design of colored CA, having
into account the spatial-spectral modulation as well as its simultane-
ous design for different number of snapshots, which is the approach
presented in this work. This work specifically develops a colored
coded aperture optimization, which includes variability and unifor-
mity constraints as well as hardware restrictions such as the number
of filters and a novel moving strategy, which can be implemented
as a moving colored lithographic mask using a micro-piezo electric
device. Figure 1 depicts the physical sensing phenomenon in a CSI
system. Notice the colored coded aperture, which can be moved ver-
tically to acquire two different snapshots.

2. CASSI SYSTEM WITH COLORED CODED APERTURES

The coded aperture snapshot spectral imager (CASSI), which is an
example of a compressive spectral imager (CSI) architecture is com-
posed by a coded aperture, a dispersive element, and a focal plane
array (FPA). Figure 1 shows the main components of the colored
CASSI. The micro-lithography and coating technology boost the
fabrication of the colored CA with different optical filters, allowing
not only the spatial but the spectral modulation as well. Therefore,
and taking advantage of the recent advances in mask fabrication, a
colored coded aperture defined as T`

mnk modulates the source, a
spatio-spectral image defined as Fmnk, where m and n index the
spatial coordinates, k determines the kth spectral band, and the `
index the number of snapshots to be captured, each one using a dif-
ferent colored CA. The `th FPA measurement, using this notation is
defined as,
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G`
mn =

L−1∑
k=0

T`
m(n−k)kFm(n−k)k + ωmn, (1)

where m,n = 0, 1, . . . , N − 1, k = 0, 1, . . . , L − 1, and ω rep-
resents the noise of the sensing system. Notice that F ∈ RN2L,
T` ∈ RN2L, and G` ∈ RN2

.

2.1. Binary representation of the colored coded aperture

A colored CA Tmnk can be represented as an arrangement of
binary CAs Tmn per each of the L bands, as it is presented in
fig. 2. Other representation using the binary CA can be used
instead, with the aim of reducing the complexity of the coded
aperture design proposed in this work. This matrix arrangement
is defined as the horizontal concatenation of the L binary Tmn

CAs or the respective binary representation of the colored coded
aperture such that Xi = [Tᵀ

mn1 . . .T
ᵀ
mnL]

ᵀ, and the subse-
quent vertical concatenation of the previous codes for the K shots.
Then, the colored CA binary matrix for K snapshots is defined as
X =

[
(X1)ᵀ, . . . , (Xi)ᵀ, . . . (XK)ᵀ

]ᵀ
, such that X ∈ RKN×NL,

and Xi ∈ RN×N·L. A cartoon representation of the arrangement
is displayed in fig. 3, this colored CA modulates a spatiospectral
data cube of dimensions 16 × 16 × 3, and for 2 shots. The pattern
distribution used in the sketch is a random pattern.
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Fig. 2. Color coded aperture with low, band and high pass filters and
its equivalent set of binary coded apertures.

2.2. Reconstruction Algorithm

The multispectral signal F ∈ RN×N×L, or its vector representation
f ∈ RN·N·L is S-sparse on some basis Ψ. Hence, the signal can
be approximated by a linear combination of S vectors from Ψ with
S � (N · N · L) as f = Ψθ. An alternative representation of the
projections in CASSI is given by g = HΨθ = Aθ, where H is
a matrix structure, determined by the coded aperture entries and the
dispersive element effect, and the matrix A = HΨ is the sensing
matrix.An estimate of the spatio-spectral data cube from the measure-
ments G can be attained by solving the optimization problem,

f̂ = Ψ

{
argmin

θ
‖g −HΨθ‖2 + τ‖θ‖1

}
, (2)

where τ is a regularization constant. The basis representation Ψ
is set as the Kronecker product between a 2D-Wavelet Symmlet 8
basis and the 1D-Discrete Cosine Transform. Different algorithms
have been proposed to solve the optimization problem in Eq. (2), in-
cluding the two-step iterative shrinkage/thresholding (TwIST) [20],
the gradient projection for sparse reconstruction (GPSR) [21], and

Fig. 3. Proposed X matrix arrangement of a colored coded aperture
in binary representation to modulate a spatio-spectral data cube of
dimensions 16× 16× 3, and for 2 snapshots.

the Gaussian mixture models (GMM) [22]. In this work, the GPSR
algorithm was used, although any of the other algorithms could be
used as well.

3. COLORED CODED APERTURE OPTIMIZATION

The optimization of the colored CA proposed in this work is based
on the promotion of the variability and uniformity. The variabil-
ity regards the reduction of the correlation between the rows and
columns of the X matrix arrangement. The uniformity is referred to
the regularity of the sensing process through the spatial dimensions,
the spectral bands, and the number of snapshots. In addition, other
two considerations are used to guide the design process, the cost and
fabrication complexity of the CA masks.

3.1. Variability constraint

The sampling process is directly affected by the CA from Eq. (1),
therefore by X. The Gram matrix of X is used in the design opti-
mization problem as the constraint inducing the low correlation be-
tween the rows and columns of X. The row-wise and column-wise
correlations define the variability constraint as,

argmin
X

‖I1 −XXᵀ‖2F , (3)

argmin
X

‖I2 −XᵀX‖2F , (4)

where I1 and I2 are identity matrices of sizeKN×KN , and LN×
LN , respectively, and X is the optimization variable matrix.

3.2. Uniformity constraint

On the other hand, the uniformity constraint promotes the reduc-
tion of the spatial, spectral and snapshot correlation of the voxels in

Fig. 4. Four of the eight original spectral bands of the data cube used
in simulations.
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Fig. 5. Reconstruction of four spectral bands using the CASSI with color coded apertures. For each spectral band, three reconstructions from
2 measurements using the random, the genetic algorithm optimization, and the designed coded apertures are shown.

the acquisition process. In the case of the snapshots, when multiple
snapshots are acquired, the number of times a voxel is sensed across
shots given a CA arrangement X, can be calculated as the product
RX, where R = [I1, · · · , Ik]ᵀ, and Ii is an identity matrix of size
N ×N . Then, the shots uniformity can be minimized by solving,

argmin
X

‖U−RX‖2F , (5)

where U is a matrix with constant values.

Regarding the spectral sensing, the uniformity is guaranteed if
the number of times a spectral voxel is sensed is as uniform as possi-
ble, and it is calculated as XD, with D = [0ᵀ

N×L−L, I
ᵀ
N ,0

ᵀ
N×L−1,

. . . ,0ᵀ
N×L−1, I

ᵀ
N ,0

ᵀ
N×L−L]

ᵀ, where 0N×L−1 is a 0−valued N ×
L− 1 matrix, and IN is an identity N ×N matrix. The uniformity
is then given by the constraint,

argmin
X

‖V −XD‖2F , (6)

where V is a matrix with constant values, keeping the sensing pro-
portions.

With respect to the spatial uniformity, the purpose, is to avoid
the clusters of one-valued entries both in the columns, and in the
rows of the CA pattern. These constraints are defined as,

argmin
X

‖B−XW‖2F , (7)

argmin
X

‖C− ZX‖2F , (8)

where B and C are matrices with constant values, W and Z are
positive definite Toeplitz matrices of size LN×LN andKN×KN
respectively. The selection of the number of 1-value diagonals in the
Toeplitz matrices determine the number of neighbor pixels to analize
of a row/column. The expected behavior of the resulting matrices
as in the previous constraints is to be as constant as possible and
therefore promote a more uniform sensing.

Considering the variability constraints in Eqs. (3) and (4), and
the uniformity constraints in Eqs. (5), (6), (7), and (8), the cost
function to solve is defined as,

argmin
X

c(X) = φ1‖I1 −XXᵀ‖2F + φ2‖I2 −XᵀX‖2F

+φ3‖U−RX‖2F + φ4‖V−XD‖2F
+ φ5‖B−XW‖2F + φ6‖C−ZX‖2F ,

(9)

where φ1,φ2,φ3,φ4,φ5, and φ6 are step control variables. The
minimization problem is solved with a gradient descent algorithm,
which iteratively minimizes Eq. (9), starting with a realization of a
random CA, and with the aim to find an optimized coded aperture
arrangement X∗.

3.3. Cost and fabrication complexity constraint

The cost limitations are given by the type and number of filters used
in the fabrication, and the number of masks required for multishot
systems. In order to reduce the cost and fabrication complexity, the
spectral response of the filters in the CA is limited to be either low
or high pass filters, and the cut-off wavelengths of the filters are
assumed to be selected from the subset λ0, . . . , λL−1. Thus, only
2λL colored filters can be selected for each coded aperture pixel.
A thresholding operator is applied at each iteration of the gradient
descent algorithm, to reduce the resultinf filters of the coded aper-
ture, to those belonging to the set Λ ∈

{
ΛLow ∪ΛHigh

}
, where

the set of low pass filters is ΛLow =
{
λLow
0 , . . . , λLow

L

}
, and the

set of high pass filters is ΛHigh =
{
λHigh
0 , . . . , λHigh

L

}
. On the

other hand, the design of the colored CA patterns for a multishot
system is proposed such that only one moving mask is required. The
strategy consists in the concatenation of vertical complementary col-
ored coded aperture patches of size S×N , where S is the number of
pixels the mask should be moved between shots. The final spatial di-
mension of the moving colored coded aperture isN+(S ∗(K−1)).

4. SIMULATIONS RESULTS

In order to verify the proposed moving coloring CA design, three
sets of compressive measurements are calculated using the model
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Fig. 6. Reconstruction of four spectral bands using the CASSI with
color coded apertures. For each spectral band, three reconstructions
from 4 measurements using the random, the genetic algorithm opti-
mization, and the designed coded apertures are displayed.

in Eq. (1). The difference between each set of measurements is
the modulation pattern. The first set is modulated by a random LH-
colored CA, the second set is modulated by a genetic algorithm (GA)
optimal LH-colored CA in literature [6], and the third set is modu-
lated by the proposed moving colored CA pattern. In order to make
a fair comparison, the three CAs are designed to be moving patterns.
A test data cube F with 256 × 256 pixels of spatial resolution and
L = 8 spectral bands is used. To construct these measurements, the
spectral data cube F was acquired by a monochromator in the spec-
tral range between 450nm and 650nm. A CCD camera AVT Mar-
lin F0033B, with 656× 492 pixels and a pixel pitch size of 9.9µm
is used. The resolution of all the three CAs is 256× 256 pixels, they
have the same set of 16 filters, corresponding to the design forL = 8
spectral bands. The transmittance, defined as the amount of light the
CA let pass, depends on the number of shots acquired, using the re-
lation T = 1/K. The simulations were performed for K = 2, 4
shots.

The GPSR algorithm is used to obtain the reconstructions of the
data cube [21]. Figure 4 shows four of the eight spectral bands of the
original data cube used for the simulations. Figures 5 and 6 present
the respective reconstructions for two and four measurements snap-
shots, and for a shifting value of S = 8 pixels. For each spectral
band, the reconstructions from the measurements acquired using the
random, the GA optimized, and the designed moving color CA are
presented. The spatial quality is improved when the designed coded
aperture is used, as can be seen in the zoom sections of fig. 5, and it
can be also noticed with the PSNR values for 2 and 4 snapshots.

In order to analyse the influence of the shifting paremeter S, a
set of simulations were performed for K = 2 and K = 4 snapshots,
and for the three colored CAs. The overall performance achieved by
the designed colored CA is superior for 2 and 4 snapshots. Figures 7

Fig. 7. Mean PSNR achieved with K = 2 measurements snapshots
for different vertical shifting value S from 1 to 32 pixels.

Fig. 8. Mean PSNR achieved with K = 4 measurements snapshots
for different vertical shifting value S from 1 to 32 pixels.

and 8 report these results. The results correspond with results in lit-
erature [6], where random colored CAs are shown to behave closely
as the optimized designs for K = 2. For greater number of snap-
shots K = 4, the designed colored CA from literature and the ones
proposed get better reconstruction performance than random codes
for all the shifting values. In general, the terms in the optimization
function cover the constraints imposed by works in the state of the
art, which results in the superior performance of the proposed codes
in comparison with other approaches.

5. CONCLUSIONS

An optimization of a moving colored CA in compressive spectral
imaging is proposed. The optimization promotes the variability
and uniformity of the patterns, as well as the consideration of hard-
ware limitations to reduce the cost of fabrication of the masks. The
moving colored CA designs where simulated and the achieved im-
provement for the reconstruction PSNR is up to 3 dB, obtained in
comparison with random and optimal LH-colored CAs in literature.

Acknowledgment. This research was supported by the grant
VIE-UIS: Computational optical system to improve the spatial res-
olution of hyperspectral images through the fusion of compressive
sensed data (2436). Laura Galvis is supported by a Colciencias
scholarship.

7688



6. REFERENCES

[1] Nathan Hagen and Michael W Kudenov, “Review of snapshot
spectral imaging technologies,” Optical Engineering, vol. 52,
no. 9, pp. 090901–090901, 2013.

[2] Ashwin Wagadarikar, Renu John, Rebecca Willett, and David
Brady, “Single disperser design for coded aperture snapshot
spectral imaging,” Applied optics, vol. 47, no. 10, pp. B44–
B51, 2008.

[3] David J Brady, Optical imaging and spectroscopy, John Wiley
& Sons, 2009.

[4] RM Willett, Michael E Gehm, and David J Brady, “Multi-
scale reconstruction for computational spectral imaging,” in
Electronic Imaging 2007. International Society for Optics and
Photonics, 2007, pp. 64980L–64980L.

[5] M. Elad, “Optimized projections for compressed sensing,”
IEEE Transactions on Signal Processing, vol. 55, no. 12, pp.
5695–5702, Dec 2007.

[6] Henry Arguello and Gonzalo R Arce, “Colored coded aper-
ture design by concentration of measure in compressive spec-
tral imaging,” IEEE Transactions on Image Processing, vol.
23, no. 4, pp. 1896–1908, 2014.

[7] Laura Galvis, Henry Arguello, and Gonzalo R. Arce, “Coded
aperture design in mismatched compressive spectral imaging,”
Appl. Opt., vol. 54, no. 33, pp. 9875–9882, Nov 2015.

[8] Laura Galvis, Daniel Lau, Xu Ma, Henry Arguello, and Gon-
zalo R. Arce, “Coded aperture design in compressive spectral
imaging based on side information,” Appl. Opt., vol. 56, no.
22, pp. 6332–6340, Aug 2017.

[9] Edson Mojica, Said Pertuz, and Henry Arguello, “High-
resolution coded-aperture design for compressive x-ray tomog-
raphy using low resolution detectors,” Optics Communica-
tions, vol. 404, pp. 103 – 109, 2017, Super-resolution Tech-
niques.

[10] Michael A. Golub, Amir Averbuch, Menachem Nathan,
Valery A. Zheludev, Jonathan Hauser, Shay Gurevitch, Roman
Malinsky, and Asaf Kagan, “Compressed sensing snapshot
spectral imaging by a regular digital camera with an added op-
tical diffuser,” Appl. Opt., vol. 55, no. 3, pp. 432–443, Jan
2016.
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