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ABSTRACT

While neural networks have achieved vastly enhanced perfor-
mance over traditional iterative methods in many cases, they
are generally empirically designed and the underlying struc-
tures are difficult to interpret. The algorithm unrolling ap-
proach has helped connect iterative algorithms to neural net-
work architectures. However, such connections have not been
made yet for blind image deblurring. In this paper, we pro-
pose a neural network architecture that advances this idea. We
first present an iterative algorithm that may be considered a
generalization of the traditional total-variation regularization
method on the gradient domain, and subsequently unroll the
half-quadratic splitting algorithm to construct a neural net-
work. Our proposed deep network achieves significant prac-
tical performance gains while enjoying interpretability at the
same time. Experimental results show that our approach out-
performs many state-of-the-art methods.

1. INTRODUCTION

Blind image deblurring refers to the process of recovering a
sharp image from its blurred observation. Among various de-
blurring problems, motion deblurring is an important topic
because camera shaking is common during photography. As-
suming a planar scene and translational camera motion, the
blurring process is typically modeled as [1]: y = k ∗ x + n
where y is the observed blur image, x is the latent sharp im-
age, k is the blur kernel, and n is noise which is often mod-
elled as Gaussian. When k is unknown the corresponding
estimation problem is commonly called blind deconvolution.

The majority of existing blind motion deblurring methods
rely on iterative optimization. These methods usually hinge
on sparsity-inducing regularizers, either in the gradient do-
main [2, 3, 4, 5, 6, 7, 8, 9] or more general sparsifying trans-
formation domains [10, 11, 12, 13]. Variants of such methods
may arise indirectly from a statistical estimation perspective,
such as [14, 15, 16]. While these methods are typically phys-
ically interpretable, their performance depends heavily on ap-
propriate selection of parameters and careful design of reg-
ularizers/priors, which are difficult to determine analytically.
Furthermore, hundreds of iterations are usually required to
achieve an acceptable performance level, and thus these algo-
rithms can be computationally expensive.

Complementary to the aforementioned approaches, learn-
ing based methods for determining a non-linear mapping that
deblurs the image while adapting parameter choices to an un-
derlying training image set have been developed. Principally
important in this class are techniques that employ deep neu-
ral networks, including [17, 18, 19, 20]. Although they of-
fer practical promises in certain scenarios such as video de-
blurring and achieves substantial performance gains in some
cases, these works commonly regard neural networks as ab-
stract function approximators. The structures of the networks
are typically empirically determined and the actual function-
ality of the neural networks is hard to interpret.

In the seminal work of Gregor et al. [21], a novel tech-
nique called algorithm unrolling was proposed that provides
a neural network interpretation of iterative sparse coding al-
gorithms. Passing through the network is equivalent to exe-
cuting the iterative algorithm a finite number of times, and the
trained network can be naturally interpreted as a parameter
optimized algorithm. In blind deblurring, Schuler et al. [22]
employ neural networks as feature extraction modules and in-
tegrate it into a trainable deblurring system. However, the
network portions are still empirical and the whole system re-
mains hard to interpret. The link between traditional iterative
algorithms and neural networks remains largely unexplored
for the problem of blind deblurring.

In this paper, we develop a neural network approach for
blind motion deblurring in the spirit of algorithm unrolling,
called Deblurring via Algorithm Unrolling (DAU). Parame-
ters of the algorithm are optimized by training the network
and performance gains are achieved without sacrificing in-
terpretability. We experimentally verify its superior perfor-
mance, both over best-known iterative algorithms and more
recent neural network approaches.

2. DEBLURRING VIA ALGORITHM UNROLLING

The total-variation regularization approach in the gradient do-
main [23] solves the following optimization problem:

min
k,g1,g2

1

2

(
‖Dxy − k ∗ g1‖22 + ‖Dyy − k ∗ g2‖22

)

+ λ1‖g1‖1 + λ2‖g2‖1 +
ε

2
‖k‖22,

subject to 1Tk = 1, k ≥ 0, (1)
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where Dxy, Dyy are the partial derivates of y in horizontal
and vertical directions respectively, 1 is a vector whose en-
tries are all ones, and ‖ · ‖p denotes the `p vector norm. The
parameters λ1, λ2, ε are positive constants which balance the
contributions of each term. The ≥ sign acts elementwise.

In practice, Dxy and Dyy are usually computed using
discrete filters, such as the Prewitt and Sobel filters. From
this viewpoint, a straightforward generalization of (1) is to
use more than two filters. We formulate the generalized opti-
mization problem as the following:

min
k,{gi}i

C∑

i=1

(
1

2
‖fi ∗ y − k ∗ gi‖22 + λi‖gi‖1

)
+
ε

2
‖k‖22,

subject to ‖k‖1 = 1, k ≥ 0, (2)

where {fi}Ci=1 is a collection of C filters that will be deter-
mined subsequently through learning.

Algorithm 1 Half-quadratic Splitting Algorithm
Input: Blurred image y, filter banks {f li}i,l, positive con-

stant parameters {ζli , λli}i,l, ε, number of iterations L.

Output: Estimated kernel k̃, feature maps {g̃i}Ci=1.
1: Initialize k← δ; zi ← 0, i = 1, . . . , C.
2: for l = 1 to L do
3: for i = 1 to C do
4: yli ← f li ∗ y,

5: gl+1
i ← F−1

{
ζlik̂

l
∗�ŷl

i+ẑl
i

ζli

∣∣∣k̂l
∣∣∣2+1

}
,

6: zl+1
i ← Sλl

iζ
l
i

{
gl+1
i

}
,

7: end for

8: kl+
1
3 ← F−1




∑C

i=1 ẑl+1
i

∗
�ŷl

i∑C
i=1

∣∣∣∣ẑl+1
i

∣∣∣∣2+ε


,

9: kl+
2
3 ←

[
kl+

1
3

]
+

, kl+1 ← kl+2
3∥∥∥kl+2
3

∥∥∥
1

,

10: end for

2.1. Efficient Minimization via Half-quadratic Splitting

A common approach to solve (1) and more generally (2) is the
half-quadratic splitting algorithm [24]. The basic idea is to
perform variable-splitting and then alternating minimization
on the penalty function. To this end, we first cast (2) into the
following approximation model:

min
k,{gi,zi}i

C∑

i=1

(
1

2
‖fi ∗ y − k ∗ gi‖22

+ λi‖zi‖1 +
1

2ζi
‖gi − zi‖22

)
+
ε

2
‖k‖22,

subject to ‖k‖1 = 1, k ≥ 0, (3)

by introducing auxiliary variables {zi}Ci=1 and constant pa-
rameters ζi, i = 1, . . . , C. We then alternately minimize over
{xi}i, {zi}i and k and iterate until convergence.

In practice, a common strategy is to alter the parame-
ters per iteration [24, 7, 23, 9]. In numerical analysis and
optimization, this strategy is formally called continuation
method. By adopting this strategy, we choose different pa-
rameters {ζli , λli}i,l across the iterations l. We take this idea
one step further by varying the filters {fi}i as well. The
complete algorithm is summarized in Algorithm 1. We let
·̂ denote the Discrete Fourier Transform (DFT) and F−1 be
the inverse DFT. We define [x]+ = max{x, 0}, δ is the unit
impulse function, ·∗ is the complex conjugation and � is
the Hadamard product operator. Finally, Sλ(·) is the soft-
thresholding operator: Sλ(x) = sgn(x) · max{|x| − λ, 0}.
Operations matrices and vectors act elementwise.

After algorithm 1 converges, we obtain the estimated fea-
ture maps {g̃i}i and the estimated kernel k̃. When k̃ approxi-
mates k, g̃i should approximate fi ∗x. Therefore, we retrieve
the image x by solving the following optimization problem:

x̃← argmin
x

1

2

∥∥∥y − k̃ ∗ x
∥∥∥
2

2
+

C∑

i=1

ηi
2
‖fi ∗ x− g̃i‖22

= F−1





̂̃
k
∗
� ŷ +

∑C
i=1 ηif̂i

∗ � ̂̃gi∣∣∣∣
̂̃
k

∣∣∣∣
2

+
∑C
i=1 ηi

∣∣∣f̂i
∣∣∣
2




, (4)

where ηi’s are positive constant parameters.

2.2. Network Construction via Algorithm Unrolling
Each step of Algorithm 1 is in analytic form and can be imple-
mented using a series of basic functional operations. There-
fore, each iteration of Algorithm 1 admits a layered repre-
sentation, and repeating it L times yields an L-layer neu-
ral network (assuming L iterations). For notational brevity,
we concatenate the parameters in each layer and let f l =

(f li )
C

i=1, ζ
l = (ζli)

C

i=1, λ
l = (λli)

C

i=1 and η = (ηi)
C
i=1. We

also concatenate yli’s, zli’s and gli’s by letting yl = (yli)
C

i=1,
zl = (zli)

C

i=1 and gl = (gli)
C

i=1, respectively.
To handle large blur kernels, we alter the size of the filter

banks {fi}i in different layers in the following way:

size of f1i > size of f2i > size of f3i > . . . .

so that high-level representations features are captured first,
and fine details emerge in later iterations. To facilitate train-
ing, we produce large filters by cascading small 3 × 3 filters,
following the same principle as [25]. Formally speaking, we
set fLi = wL

i1 where {wL
i1}

C

i=1 is a collection of 3 × 3 fil-
ters, and recursively obtain f li by: f li ←

∑C
j=1 w

l
ij ∗ f l+1

j .
Using this representation, we obtain the network structure in
Fig. 1. The parameters {wl, bl, λl}Ll=1 will be learned from
the training data, as explained in the next Section.
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Fig. 1. Structure of the deep network constructed by algorithm unrolling and cascaded filtering. Block A and B implements
Step 5 and Step 8 in Algorithm 1 respectively, while block C implements (4). A diagram representation can be found at
http://signal.ee.psu.edu/diagram.pdf. Intermediate data (hidden layers) on the trained network are also shown.
It can be observed that, as l increases, more details are extracted in gl and finer kernel coefficients are recovered. The parameters
that will be learned from real datasets are colored in blue.

Table 1. Quantitative comparison averaged over 200 images
from the BSDS500 [27] set and 4 linear kernels. The RMSE
values are computed over kernels. Best scores are in bold.

Metrics DAU [23] [26]

PSNR (dB) 27.21 22.23 25.23

ISNR (dB) 4.36 2.06 1.88

SSIM 0.88 0.76 0.81

RMSE (×10−3) 2.21 5.21 −

3. EXPERIMENTS

Training: We use the training and validation portions from
the Berkeley Segmentation Dataset (BSDS500) [27] as train-
ing images. The linear motion kernels are generated by uni-
formly sampling 16 angles in [0, π] and 16 lengths in [5, 20].
The images are convolved with each kernel and white Gaus-
sian noise with standard deviation 0.01 (suppose the image in-
tensity is in [0, 1]) is added. For each blurred image ytrain

t (t =
1, . . . , T ), we let the corresponding sharp image and kernel be
xtrain
t and ktrain

t , respectively. We re-parametrize λli in step 6
of Algorithm 1 by letting bli = λliζ

l
i and let bl = (bli)

C

i=1, l =

1, . . . , L. The network outputs x̃t, k̃t corresponding to ytrain
t

depend on the network parameters wl, bl, λl, l = 1, 2, . . . , L,
and x̃t further depends on η. We train the network to deter-
mine those parameters by minimizing:

Table 2. Quantitative comparison on nonlinear motion (av-
erage over 4 images and 8 kernels from [28]). The RMSE
values are computed over kernels. Best scores are in bold.

DAU [23] [26] [19] [20]

PSNR (dB) 27.15 26.79 24.51 23.18 26.75

ISNR (dB) 3.79 3.63 1.35 0.02 3.59

SSIM 0.88 0.89 0.81 0.81 0.89

RMSE (×10−3) 3.87 3.83 − − 3.98

min
{wl,bl,λl}Ll=1,η

T∑

t=1

MSE
(
xtrain
t − x̃t

(
{wl, bl, λl}Ll=1, η

))

+κMSE
(
ktrain
t − k̃t

({
wl, bl, λl

}L
l=1

))
,

subject to bli ≥ 0, λli ≥ 0, l = 1, . . . , L, i = 1, . . . , C,

where κ > 0 is a constant parameter which is fixed to 105

and MSE is the Mean Squared Error. We choose L = 10
and C = 16 by cross-validation. The minimization is per-
formed by stochastic gradient descent, followed by a gradient
projection step to enforce the non-negative constraints. We
use the Adam [29] solver for faster training. The learning rate
is set to 1× 10−3 initially and decayed by a factor of 0.9 per
epoch. We terminate training after 20 epochs. The parameters
{λli}i,l are initialized to zeros, {bli}i,l to 1, and {ηi}i to 20,
respectively. The weights are initialized according to [30].
Evaluation: We use 200 images from the test portion from
the BSDS500 dataset [27] as test images. We randomly
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(a) Groundtruth (b) Perrone et al. [23] (c) Nah et al. [26] (d) DAU

Fig. 2. Qualitative comparisons on the BSDS500 dataset [27]. The blur kernels are placed at the right below corner. DAU
recovers the kernel at higher accuracy and therefore the estimated images are more faithful to the groundtruth.

(a) Groundtruth (b) Perrone et al. [23] (c) Nah et al. [26] (d) Chakrabarti [19] (e) Xu et al. [20] (f) DAU

Fig. 3. Qualitative comparisons on the dataset from [28]. The blur kernels are placed at the right below corner. DAU generates
fewer artifacts and preserves more details than competing state of the art methods.

choose angles from [0, π] and lengths from [5, 20] to generate
4 test kernels. We compare with state-of-the art algorithms,
Perrone et al. [23] and Nah et al. [26], which are represen-
tatives of iterative algorithms and deep-learning approaches.
We assess the performance using four commonly used evalu-
ation metrics: Peak Signal-to-Noise-Ratio (PSNR), Improve-
ment in Signal-to-Noise-Ratio (ISNR), Structural Similarity
Index (SSIM) [31], and Root-Mean-Square Error (RMSE)
between the estimated kernel and the groundtruth kernel. The
average scores are in Table 1. Clearly, DAU outperforms
state-of-the art algorithms by a significant margin.

Fig. 2 shows example images and kernels for a qualitative
comparison. Although Perrone et al.’s method can roughly
infer the directions of the blur kernels, the recovered coef-
ficients are unsatisfactory. As a result, the recovered image
contains clearly visible artifacts. Nah et al.’s method effec-
tively removes most of the blurs, but blurring artifacts still
remain locally and the details are not faithfully preserved. In
contrast, the kernel recovered by DAU is closer to the ground
truth and hence leads to a more accurate estimated image.

Additionally, we compare the performance of various
methods on deblurring under non-linear motion kernels,
which is a more realistic scenario as discussed in [28]. We
collect training kernels by interpolating the paths provided
by [32] and created by ourselves in the same manner. We fur-
ther augment these kernels by scaling and rotations. We use
the standard image set from [28] (comprising 4 images and 8
kernels) as the test set. The average scores are presented in
Table 2. Again DAU outperforms state-of-the-art methods. A
visual example is shown in Fig. 3,

4. CONCLUSION

We propose a neural network deblurring architecture built by
unrolling an iterative algorithm. We show how a generalized
TV-regularized algorithm can be recast into a neural network,
and train it to optimize the parameters. Unlike most existing
deblurring networks, our work has the benefit of interpretabil-
ity, while exhibiting performance benefits that are shared with
modern deep-nets and exceed state of the art performance.
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