
Parallel Coordinate Descent Algorithms
for Sparse Phase Retrieval

Yang Yang1, Marius Pesavento2, Yonina C. Eldar3, and Björn Ottersten1

1. Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, L-1855 Luxembourg.
2. Communication Systems Group, Technische Universität Darmstadt, Darmstadt 64283, Germany.

3. Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Email: yang.yang@uni.lu, pesavento@nt.tu-darmstadt.de, yonina@ee.technion.ac.il, bjorn.ottersten@uni.lu

Abstract—In this paper, we study the sparse phase retrieval problem,
that is, to estimate a sparse signal from a small number of noisy
magnitude-only measurements. We propose an iterative soft-thresholding
with exact line search algorithm (STELA). It is a parallel coordinate de-
scent algorithm, which has several attractive features: i) fast convergence,
as the approximate problem solved at each iteration exploits the original
problem structure, ii) low complexity, as all variable updates have a
closed-form expression, iii) easy implementation, as no hyperparameters
are involved, and iv) guaranteed convergence to a stationary point
for general measurements. These advantages are also demonstrated by
numerical tests.

Index Terms—DC Programming, Majorization Minimization, Phase
Retrieval, Successive Convex Approximation

I. INTRODUCTION

Phase retrieval refers to the problem of estimating a complex-
valued signal x0 ∈ CK from the magnitude (or squared magnitude)
of its noisy measurements. It has received considerable attention
due to its importance in various applications, for example, x-ray
crystallography, diffraction imaging and astronomy (see [1, 2] or the
magazine review [3, 4, 5] and the references therein).

Suppose the n-th measurement yn ∈ R+ is the magnitude of the
output of a linear system, where

yn =
∣∣∣aHn x0 + vn

∣∣∣ , n = 1, . . . , N, (1a)

or
yn =

∣∣∣aHn x0

∣∣∣+ vn, n = 1, . . . , N, (1b)

where an is a known linear operator, vn is additive noise, and N is
the number of measurements. Here we assume x0 is sparse to aid in
recovery. A possible approach to recover the sparse signal x0 is to
minimize the least-square criterion f(x) , 1

2

∑N
n=1

(
yn −

∣∣aHn x
∣∣)2

regularized by a sparsity-promoting prior function g(x) , µ ‖x‖1:

minimize
x∈CK

h(x) ,
1

2

N∑
n=1

(
yn −

∣∣∣aHn x
∣∣∣)2︸ ︷︷ ︸

f(x)

+µ ‖x‖1︸ ︷︷ ︸
g(x)

, (2)

and µ > 0 is a given and fixed regularization gain. It is a very
challenging optimization problem due to the fact that g is nonsmooth
and, more notably, f is nonsmooth and nonconvex.

Several algorithms have been proposed to tackle different variants
of the (sparse) phase retrieval problem. One prominent example is
the gradient algorithm, which is shown in [1] to converge to x0

The work of Y. Yang and B. Ottersten is supported by H2020-ERC
AdG-AGNOSTIC (742648). The work of M. Pesavento is supported by the
EXPRESS Project within the DFG Priority Program CoSIP (DFG-SPP 1798).
The work of Y. C. Eldar is supported by the European Unions Horizon 2020
research and innovation program under grant No. 646804-ERC-COG-BNYQ
and the Israel Science Foundation under grant No. 0100101

when N , the number of intensity (squared magnitude) measurements
(yn)Nn=1, is sufficiently large. When x0 is sparse, it can be estimated
by the GESPAR algorithm [6] based on the damped Gauss-Newton
Method. Nevertheless, they cannot be directly applied for problem
(2) because f is a function of the magnitude measurements and
is not differentiable. A smoothing technique is proposed in [7] to
approximate the nonsmooth function f by a smooth function, and
this smooth function is then minimized by a standard gradient-based
method, but the sparse prior is not considered in [7].

An alternative to tackle the nondifferentiability of f is a truncated
amplitude flow algorithm based on the notion of generalized gradient
proposed in [8]. It is further generalized in [9] to estimate a sparse
signal from magnitude measurements as in the sparse phase retrieval
problem (2). It consists of two steps: firstly, the support of the
unknown sparse signal is estimated, and secondly, the coefficients
of the nonzero elements in the support are estimated iteratively. It
enjoys low complexity, but the support recovery is only accurate when
the number of measurements is sufficiently large. In the case of an
inaccurate support recovery in the first step, the error will be further
propagated to the components estimate in the second step.

Alternating minimization schemes, also known as the Fienup
methods, have a long history which form another popular class of al-
gorithms for phase retrieval problems. A recent paper [10] establishes
the convergence of the Fienup methods for Fourier measurements, but
the convergence is still left open for general measurements.

In [11], the majorization minimization (MM) algorithm is proposed
to find a stationary point of problem (2). It iteratively minimizes an
upper bound on f , which is smooth and convex. It has a guaranteed
convergence to a stationary point, but it suffers from high complexity
and slow convergence. This is because constructing the upper bound
function consists of calculating the maximum eigenvalue of the
matrix [a1 a2 . . . aN], which is computationally expensive when the
number of measurements N and/or the signal dimension K is large.
Furthermore, due to the restrictive upper bound constraint, the MM
algorithm generally suffers from slow convergence [12].

In this paper, we propose an iterative soft-thresholding with ex-
act line search algorithm (STELA) for the sparse phase retrieval
problem (2). STELA is based on the recently developed successive
convex approximation (SCA) framework for sparse signal estimation
with difference-of-convex (DC) priors [13], which is a nontrivial
combination of the standard MM algorithm [11] and standard SCA
algorithms for smooth f and convex g [14]. In particular, at each
iteration of STELA, we minimize a convex approximation of the
global upper bound function, which is equivalent to minimizing this
bound approximately by performing only one iteration of the parallel
coordinate descent algorithm. The proposed algorithm STELA has
several advantages, namely, i) fast convergence, as the approximate
problem is the best-response type approximation and reserves the
problem structure; ii) low complexity, as all variable updates have

7670978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

a closed-form expression; iii) easy implementation, as no hyperpa-
rameter tuning is required (assuming the regularization gain µ in (2)
is given and fixed); and iv) guaranteed convergence to a stationary
point for general measurements. Finally, we illustrate these attractive
features and compare STELA with state-of-the-art algorithms by
numerical tests.

II. THE PROPOSED PARALLEL COORDINATE DESCENT

ALGORITHM

In this section, building on the SCA framework introduced in [13],
we propose a parallel coordinate descent algorithm for (2). As f in
the objective function is nonconvex and nonsmooth, the central idea
in the proposed algorithm STELA is to first find a descent direction
by constructing a smooth upper bound function and then minimizing
a convex approximation of this bound augmented by the convex prior
g. With a proper stepsize, the function value h could be decreased
by updating the variable along the descent direction. This iterative
process is repeated until a stationary point is found.

Finding the descent direction. Expanding the quadratic function
in (2), we can rewrite the function f in (2) as

f(x) = f+(x)− f−(x), (3)

where

f+(x) ,
1

2
xH
(

N∑
n=1

ana
H
n

)
x +

1

2

N∑
n=1

|yn|2 ,

f−(x) ,
N∑
n=1

yn|aHn x|.

Although f is nonsmooth because f− is nonsmooth and convex,
it is the difference of two convex functions. This structure will be
exploited when designing our iterative algorithm.

To start with, we note that f−(x) is convex in x and there always
exists a subgradient ξ(x) such that for any x1 and x2 ∈ CK :

f−(x1)− f−(x2) ≥ <(ξ(x2)H(x1 − x2)), (4a)

where <(·) is the real operator. The expression of ξ(x) can be derived
by following a similar line of analysis to [11]: for any x1 and x2,∣∣aHn x1

∣∣− ∣∣aHn x2
∣∣ (a)

=
∣∣aHn x1e−j arg(a

H
n x2)

∣∣− ∣∣aHn x2e−j arg(a
H
n x2)

∣∣
(b)

≥ <
(
aHn x1e−j arg(a

H
n x2))−

<
(
aHn x2e−j arg(a

H
n x2))

= <
(
(ej arg(a

H
n x2)an)H(x1 − x2)

)
, (4b)

where (a) and (b) follow from the fact that, for any complex number
z ∈ C, |z| is invariant with respect to phase and |z| ≥ <(z) (equality
is achieved when z is real and nonnegative), respectively. Therefore,
a subgradient of f−(x) is (recall that the measurements (yn)Nn=1 are
real and nonnegative)

ξ(x) =
N∑
n=1

yne
j arg(aH

n x)an = AH(y � ej arg(Ax)). (5)

where A , [a1 . . .aN]H ∈ CN×K , � stands for the element-wise
product, and e(·) and arg(·) are meant to be applied element-wise
when the argument is a vector.

Given a point xt at iteration t, we readily infer from (4) that f−

is lower bounded by a linear function:

f−(x) ≥ f−(xt) + <
(
ξ(xt)H(x− xt)

)
.

As a result, we design a smooth upper bound of f(x) = f+(x) −
f−(x), which is tight at x = xt:

f(x) ≤ f+(x)− f−(xt)−<
(
ξ(xt)H(x− xt)

)︸ ︷︷ ︸
f(x;xt)

, (6a)

=
1

2
xHAHAx−<

(
ξ(xt)Hx

)
+ const, (6b)

where const =
∑N
n=1 |yn|

2 − f−(xt) + <
(
ξ(xt)Hxt

)
and it is

independent of the variable x.
In the next step, we minimize the upper bound function f approx-

imately in the sense that we optimize a convex approximation of f .
Note that if we minimize f exactly, we would obtain the standard
MM algorithm [11]. We depart from the traditional MM algorithm
because f is computationally expensive to minimize exactly.

At point xt, denote f̃(x;xt) as an approximation of f̄(x;xt). We
adopt the best-response type approximation, where the approximate
function f̃(x;xt) consists of the sum of K component functions, one
for each coordinate (scalar element) xk, and the component function
for xk is obtained by fixing other scalar elements (xj)

K
j=1,j 6=k in

f(x;xt) and removing without loss of generality the constant that is
independent of the variable x:

f̃(x;xt) =
K∑
k=1

f(xk, (x
t
j)
K
j=1,j 6=k;xt)

=
K∑
k=1

(1

2

∥∥ak(xk − xtk) + Axt
∥∥2
2
−<(xHk ξk(xt))

)
. (7)

As a matter of fact, f̃(x;xt) + g(x) serves as an approximation of
the global upper bound function f(x;xt) + g(x) and thus also the
original objective function h(x) = f(x) + g(x) in (2). We denote
by Bxt the optimal point that minimizes f̃(x;xt) + g(x):

Bxt , arg min
x

f̃(x;xt) + g(x) (8a)

=
[∣∣ct∣∣− µ · d(AHA)−1

]+
� ej arg(c

t), (8b)

where [x]+ , max(x,0), d(X) denotes the diagonal vector of X,∣∣x∣∣ and x−1 are applied element-wise, and

ct , xt − d(AHA)−1 � (AHAxt − ξ(xt)).

Since Bxt has a closed-form expression in the form of soft-
thresholding in (8b), the “approximate problem” in (8a) can be more
efficiently minimized than the global upper bound function f + g.

It can be verified that f̃(x;xt) is a strongly convex function (hence
the name “convex approximation”) and Bxt is unique. Furthermore,
it satisfies the so-called gradient consistency condition, that is, its
gradient is identical to that of f(x;xt) at (and only at) x = xt:

∇f̃(xt;xt) = AHAxt − ξ(xt) = ∇f(xt;xt). (9)

It follows from [14, Prop. 1] that (i) Bxt − xt is a descent direction
of f(x;xt) + g(x) at x = xt in the sense that

<((Bxt − xt)H∇f(xt;xt)) + g(Bxt)− g(xt) < 0, (10)

and (ii) there exists a stepsize γ > 0 such that

f(xt+γ(Bxt−xt);xt)+g(xt+γ(Bxt−xt)) < f(xt;xt)+g(xt).

Since f(x;xt) is a global upper bound of f(x) which is tight at
x = xt (cf. (6)), the above inequality implies that

f(xt + γ(Bxt − xt)) + g(xt + γ(Bxt − xt)) < f(xt) + g(xt).

This motivates us to update xt+1 as follows

xt+1 = xt + γt(Bxt − xt). (11)

7671

Stepsize calculation. In practice, the stepsize γt could be obtained
by performing exact line search, which aims at finding the stepsize
that yields the largest decrease of f(x) + g(x) along the descent
direction Bxt − xt:

minimize
γ

f(xt + γ(Bxt − xt)) + g(xt + γ(Bxt − xt)). (12)

However, since the optimization problem in (12) is nonconvex, an
alternative is to replace f in (12) by its convex upper bound f :

minimize
γ

f(xt + γ(Bxt − xt);xt) + g(xt + γ(Bxt − xt)). (13)

Although the optimization problem in (13) is convex and presumably
has a much lower complexity than (12), it is still a nonsmooth
problem due to g.

To further reduce the complexity of the line search in (13), we
apply the definition of convex functions to g: for any γ ∈ [0, 1],

g(xt + γ(Bxt − xt)) ≤ (1− γ)g(xt) + γg(Bxt)
= g(xt) + γ(g(Bxt)− g(xt)). (14)

In other words, the nonsmooth function g(xt + γ(Bxt − xt)) is
always upper bounded by the differentiable and linear function
g(xt) + γ(g(Bxt) − g(xt)). We thus propose to perform the line
search over the following function which is obtained by replacing
the nonsmooth function g in (13) by its upper bound (14):

γt , arg min
0≤γ≤1

{
f(xt + γ(Bxt − xt);xt)

+g(xt) + γ(g(Bxt)− g(xt))

}
(15a)

=

[
−<((Bxt − xt)H∇f(xt;xt)) + g(Bxt)− g(xt)

‖A(Bxt − xt)‖2F

]1
0

,

(15b)

where [x]10 denotes the projection of x onto [0, 1]: [x]10 =
max(0,min(x, 1)), and ∇f(xt;xt) is given in (9). The proposed
line search admits a simple closed-form expression in (15b). Note
that γt > 0 as the term inside the square bracket is strictly positive
in view of (10); a formal proof is given in [13, Prop. 2]. Therefore,
we can show that {h(xt)} is monotonically decreasing:

h(xt) = f(xt) + g(xt)

= f(xt + γt(Bxt − xt);xt) + g(xt) + γt(g(Bxt)− g(xt))
∣∣
γ=0

(a)
> f(xt + γt(Bxt − xt);xt) + g(xt) + γt(g(Bxt)− g(xt))

(b)

≥ f(xt + γt(Bxt − xt);xt) + g(xt + γt(Bxt − xt))

(c)

≥ f(xt + γt(Bxt − xt)) + g(xt + γt(Bxt − xt))

(d)
= f(xt+1) + g(xt+1) = h(xt+1), (16)

where (a) comes from the optimality of γt in (15a), (b) from the
definition of convex functions in (14), (c) from the fact that f(x;xt)
is a global upper bound of f(x), and (d) from the update rule (11).

We term the proposed update rules (8) and (15) as Soft-
Thresholding with Exact Line search Algorithm (STELA). This
iterative procedure is formally summarized in Algorithm 1. In what
follows, we draw a few comments on its properties.

On the convergence speed. The best-response type approximation
is commonly used in Gauss-Seidel type Block Coordinate Descent
(BCD) algorithms [15, Sec. 2.7]. STELA inherits the best-response
type approximation, but unlike the sequential update in BCD al-
gorithms, all elements (xk) are updated in parallel. Besides, as
∇2f+(x) = AHA, partial second-order information in terms of the
diagonal elements of AHA is exploited in (8), and the convergence

Algorithm 1 STELA for Sparse Phase Retrieval (2)
Input: linear operator A, measurements y, sparsity regularization

gain µ, stop criterion δ.
Initialization: t = 0, x0 (arbitrary but fixed).
S1: Find the descent direction Bxt − xt:

∇f(xt;xt) = AH(Axt − y � ej arg(Axt)),

ct = xt − d(AHA)−1 �∇f(xt;xt),

Bxt =
[∣∣ct∣∣− µ · d(AHA)−1

]+
� ej arg(c

t).

S2: Compute the stepsize γt:

γt =

[
−
<((Bxt − xt)H∇f(xt;xt)) + µ(

∥∥Bxt∥∥
1
−
∥∥xt∥∥

1
)

(Bxt − xt)HAHA(Bxt − xt)

]1
0

.

S3: Update x:
xt+1 = xt + γt(Bxt − xt).

S4: Check the stop criterion: STOP if∣∣∣<((Bxt − xt)H∇f(xt;xt)) + µ(
∥∥Bxt∥∥

1
−
∥∥xt∥∥

1
)
∣∣∣ ≤ δ.

Otherwise t← t+ 1 and go to S1.

is thus typically faster than in first-order algorithms. In addition,
the stepsize is calculated based on the line search, which guarantees
notable decrease in the objective function value at each iteration.

On the complexity. STELA enjoys low complexity because both
the approximate problem and the stepsize have a closed-form ex-
pression, which involves basic linear algebraic operations. The most
complex operation is to obtain d(AHA), the diagonal elements of
AHA. It can be obtained by calculating the squared Frobenius norm
of each row of A (matrix-matrix multiplication between AH and A
is not needed), which is fully parallelizable. STELA is also easy to
use, because it does not involve any hyperparameters.

On the convergence. Since STELA is a descent algorithm, the
sequence {h(xt)} is monotonically decreasing, cf. (16). From the
mathematical perspective, problem (2) is equivalent to minimizing a
convex and smooth function f+(x) regularized by a DC prior g(x)−
f−(x). Therefore it readily follows from [13, Thm. 1] that every limit
point of the sequence {xt} generated by STELA in Algorithm 1 is
a stationary point of (2).

On the comparison with the MM algorithm. Minimizing the
upper bound function f̄(x;xt) + g(x) exactly leads to the standard
MM algorithm:

minimize
x

f(x;xt) + g(x).

As this problem does not have a closed-form solution and must be
solved iteratively, xHAHAx in f (cf. (6)) is further upper bounded
by λmax(AHA)xHx in the MM algorithm proposed in [11]:

xt+1 = arg min
x

{
1
2
λmax(AHA)xHx

−<
(
(x− xt)Hξ(xt)

)
+ µ ‖x‖1

}
. (17)

Although xt+1 in (17) has a closed-form expression, calculating the
maximum eigenvalue of AHA is computationally expensive given
the large dimension of A. Furthermore, the MM algorithm (17) may
converge slowly because A is typically ill-conditioned with many
zero eigenvalues and the global upper bound function adopted in (17)
tends to be conservative. In contrast, λmax(AHA) is not needed in
STELA, as the approximate function f̃(x;xt) in (7) does not have to
be a global upper bound of the original function f(x). This renders
more flexibility in designing new algorithms that converge faster and
have lower complexity.

7672

0 200 400 600 800 1000
number of iterations

106

107

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

STELA (proposed)
MM algorithm (state-of-the-art)

Figure 1. Objective function value h(xt) versus the number of iterations t.

III. SIMULATIONS

In this section, we perform numerical tests to compare the proposed
algorithm STELA with the MM algorithm [11] (cf. (17)) and the
sparse truncated amplitude flow algorithm (SPARTA) [9].

The simulation parameters are set as follows. All elements of
A are randomly generated by the complex normal distribution
1/
√

2(N (0, I) + jN (0, I)). The density of the sparse signal x0

is 0.1, so the number of nonzero elements is K0 , 0.1K, and
the nonzero elements are randomly generated by complex normal
distribution N (0, I) + jN (0, I). The noise vector v is real and
follows the Gaussian distribution with mean 0 and variance 10−4,
namely, N (0, 10−4). The magnitude-only measurement vector y is
generated according to (1a). The sparsity regularization parameter
µ is set to be µ = 0.05

∥∥yTA∥∥∞, which is observed empirically
to have a high successful estimate rate. If not otherwise stated, the
simulation results are averaged over 20 repetitions.

We set K = 2000 and N = 100K0 = 20000, and compare
STELA with the MM algorithm, both with the same random initial-
ization. The number of iterations and the achieved objective value
is plotted in Fig. 1, from which we see that STELA needs fewer
iterations to converge. In particular, STELA converges after 300
iterations, while the MM algorithm converges after 800 iterations.
This consolidates our argument that the restrictive global upper bound
constraint in the MM algorithm tends to slow down convergence.
Removing this constraint makes it possible to design new approxi-
mate functions that lead to faster convergence. We remark that an
acceleration scheme is proposed in [11], but it involves a successive
line search (backtracking) over the original nonsmooth nonconvex
objective function and has high complexity (see the discussion in the
context of exact line search in (12)).

Interestingly, it appears that both algorithms consist of two phases
before convergence, namely, first a fast improvement phase and then
a slow refinement phase. The slow refinement phase might be related
to the issue of escaping from the saddle points. We see from Fig.
1 that STELA enters the slow refinement phase earlier and exits the
slow refinement phase faster than the MM algorithm. A thorough and
solid theoretical analysis is interesting and left for future work.

Fig. 2 shows the CPU time and the achieved objective value.
The running time consists of both the initialization stage required
for preprocessing (represented by a flat curve) and the formal stage
in which the iterations are carried out. For example, in STELA,
d(ATA) is computed in the initialization stage since it is required
in the iterative variable update in the formal stage, cf. (8); in MM
algorithm, the maximum eigenvalue of AHA is computed.

We readily see from Fig. 2 that computing the maximum eigen-
value of AHA in the initialization stage is a major overhead of the
MM algorithm. By comparison, computing the diagonal elements of

0 20 40 60 80 100 120 140
CPU time (seconds)

106

107

ob
je
ct
iv
e
fu
nc
tio

n
va
lu
e

STELA (proposed)
MM algorithm (state-of-the-art)

Figure 2. Objective function value h(xt) versus the CPU time (in seconds).

AHA is computationally much more affordable. Besides, STELA
has a slightly higher computational complexity per iteration due to
the line search, but the overall CPU time before convergence (50
seconds) is still much shorter than that of the MM algorithm (100
seconds).

In what follows, we compare STELA with SPARTA in terms of
the estimation error defined as minφ∈[0,2π]

∥∥xejφ − x0

∥∥
F
/ ‖x0‖F .

STELA is run 10 times with different random initializations (RI), and
the minimum estimation error is reported, while SPARTA starts with
the spectral initialization (SI). This experiment is repeated 100 times,
and the average estimation error with respect to the signal dimension
K, density and number of measurements N is given in Table I.

density K K0 N(= 16K0) STELA (RI) SPARTA (SI)

0.1
100 10 160 0.1184 0.5523
200 20 320 0.4369 0.7184
300 30 480 0.8392 0.8588

0.05
100 5 80 0.2614 0.7239
200 10 160 0.6413 0.8048
300 15 240 0.8975 0.9499

Table I
THE AVERAGE ESTIMATION ERROR OF STELA AND SPARTA

We see from Table I that STELA has a smaller estimation error
than SPARTA in the tested scenarios. The measurement/dimension
(N/K) ratio is fixed for a given density, but the performance of
both algorithms deteriorate as K increases, which implies that more
measurements are needed to maintain the same estimation error. Note
that in SPARTA, the support is estimated first and then the elements
in the support are estimated iteratively. However, when the number
of noisy measurements is relatively small, the support estimate is
not accurate, and the final estimate is erroneous. Furthermore, the
performance guarantee of SPARTA is only available for SI, which
may incur a high computational complexity. By comparison, STELA
with simple RI is more robust to noise and lack of measurements.

IV. CONCLUDING REMARKS

In this paper, we studied the problem of estimating a sparse signal
from a small number of magnitude-only measurements from a linear
system. To solve this nonsmooth nonconvex optimization problem,
we proposed a parallel coordinate descent algorithm called STELA.
The proposed algorithm STELA is based on a nontrivial combination
of MM algorithms and SCA algorithms: at each iteration, a global
upper bound function of the original nonsmooth nonconvex objective
function is minimized approximately by performing the parallel
coordinate descent update once. Then the stepsize is calculated
by performing line search over a properly designed differentiable
function and admits a closed-form expression. STELA has several
advantages, such as fast convergence, low complexity, and guaranteed
convergence to a stationary point for general measurements.

7673

REFERENCES

[1] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase Retrieval via
Wirtinger Flow: Theory and Algorithms,” IEEE Transactions on
Information Theory, vol. 61, no. 4, pp. 1985–2007, Apr. 2015.

[2] J. Sun, Q. Qu, and J. Wright, “A Geometric Analysis of Phase
Retrieval,” Foundations of Computational Mathematics, vol. 18, no. 5,
pp. 1131–1198, Oct. 2018.

[3] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and
M. Segev, “Phase Retrieval with Application to Optical Imaging: A
contemporary overview,” IEEE Signal Processing Magazine, vol. 32,
no. 3, pp. 87–109, May 2015.

[4] Y. C. Eldar, N. Hammen, and D. G. Mixon, “Recent Advances in Phase
Retrieval [Lecture Notes],” IEEE Signal Processing Magazine, vol. 33,
no. 5, pp. 158–162, Sep. 2016.

[5] D. R. Luke, “Phase retrieval, what’s new?” SIAG / OPT Views and News,
vol. 25, no. 1, pp. 1–6, 2017.

[6] Y. Shechtman, A. Beck, and Y. C. Eldar, “GESPAR: Efficient Phase
Retrieval of Sparse Signals,” IEEE Transactions on Signal Processing,
vol. 62, no. 4, pp. 928–938, Feb. 2014.

[7] S. Pinilla, J. Bacca, and H. Arguello, “Phase Retrieval Algorithm via
Nonconvex Minimization Using a Smoothing Function,” IEEE Transac-
tions on Signal Processing, vol. 66, no. 17, pp. 4574–4584, Sep. 2018.

[8] G. Wang, G. B. Giannakis, and Y. C. Eldar, “Solving Systems of
Random Quadratic Equations via Truncated Amplitude Flow,” IEEE
Transactions on Information Theory, vol. 64, no. 2, pp. 773–794, Feb.
2018.

[9] G. Wang, L. Zhang, G. B. Giannakis, M. Akcakaya, and J. Chen,
“Sparse Phase Retrieval via Truncated Amplitude Flow,” IEEE
Transactions on Signal Processing, vol. 66, no. 2, pp. 479–491, Jan.
2018.

[10] E. J. R. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On Fienup
Methods for Sparse Phase Retrieval,” IEEE Transactions on Signal
Processing, vol. 66, no. 4, pp. 982–991, Feb. 2018.

[11] T. Qiu and D. P. Palomar, “Undersampled Sparse Phase Retrieval via
Majorization-Minimization,” IEEE Transactions on Signal Processing,
vol. 65, no. 22, pp. 5957–5969, Nov. 2017.

[12] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-Minimization Algo-
rithms in Signal Processing, Communications, and Machine Learning,”
IEEE Transactions on Signal Processing, vol. 65, no. 3, pp. 794–816,
Feb. 2017.

[13] Y. Yang, M. Pesavento, S. Chatzinotas, and B. Ottersten, “Successive
Convex Approximation Algorithms for Sparse Signal Estimation with
Nonconvex Regularizations,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, no. 6, pp. 1–19, Dec. 2018.

[14] Y. Yang and M. Pesavento, “A Unified Successive Pseudoconvex
Approximation Framework,” IEEE Transactions on Signal Processing,
vol. 65, no. 13, pp. 3313–3328, Jul. 2017.

[15] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.

7674

		2019-03-18T11:04:30-0500
	Preflight Ticket Signature

