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ABSTRACT

The plug-and-play priors (PnP) framework has been recently shown
to achieve state-of-the-art results in regularized image reconstruction
by leveraging a sophisticated denoiser within an iterative algorithm.
In this paper, we propose a new online PnP algorithm for Fourier
ptychographic microscopy (FPM) based on the accelerated proximal
gradient method (APGM). Specifically, the proposed algorithm uses
only a subset of measurements, which makes it scalable to a large
set of measurements. We validate the algorithm by showing that
it can lead to significant performance gains on both simulated and
experimental data.

Index Terms— Fourier ptychography, plug-and-play priors,
stochastic gradient descent, proximal-gradient method, forward-
backward algorithm, nonconvex optimization.

1. INTRODUCTION

In computational microscopy, the task of reconstructing an image
x of an unknown object from a collection of noisy light-intensity
measurements is often formulated as an optimization problem

&:\:argmmin{f(m)} with  f(z)=d(z)+r(x), (1)

where the data-fidelity term d(-) ensures the consistency with the
measurements and the regularizer 7(-) promotes a solution with de-
sirable prior properties such as non-negativity, self-similarity and
transform-domain sparsity [1-4]. Due to the nondifferentiability of
most regularizers, proximal methods—such as variants of proximal
gradient method (PGM) [5-8] and alternating direction method of
multipliers (ADMM) [9-11]—are commonly used for solving (1).
These algorithms avoid differentiating the regularizer by using a
mathematical concept known as the proximal operator, which is an
optimization problem equivalent to regularized image denoising.
Inspired by this mathematical equivalence, Venkatakrishnan et
al. [12] introduced the plug-and-play priors (PnP) framework for im-
age reconstruction. The key idea in PnP is to replace the proximal
operator in an iterative algorithm with a state-of-the-art image de-
noiser, such as BM3D [13] or TNRD [14], which does not necessar-
ily have a corresponding regularization objective. Although this im-
plies that PnP methods generally lose interpretability as optimization
problems, the framework has gained popularity because of its suc-
cess in a range of applications in the context of imaging inverse prob-
lems [15-22]. Note that regularization by denoising (RED) [23,24]
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is an alternative approach for integrating a denoiser into an imag-
ing problem. The key difference between RED and PnP is that the
former builds an explicit regularizer, while the latter relies on an im-
plicit regularization.

Nevertheless, all current iterative PnP algorithms are based on
iterative batch procedures, which means that they always calculate
the updates using the full set of measured data. This makes their
application impractical to very large datasets [25]. One natural ex-
ample is Fourier ptychographic microscopy (FPM), where the image
formation task relies on hundreds of variably illuminated intensity
measurements [26-28].

A novel online extension of PnP-APGM, called plug-and-play
stochastic proximal gradient method (PnP-SPGM), was recently
proposed and theoretically analyzed for a convex d(-) [29]. Here,
we extend these results by adapting the algorithm to FPM imaging,
where d(-) is nonconvex. We show that the proposed PnP-SPGM-
FPM enables high-quality FPM imaging at lower computational
complexity by using only a small subset of measurements per it-
eration. We show on both simulated and experimentally measured
FPM datasets that the algorithm substantially outperforms its batch
counterparts when the memory budget is limited.

2. BACKGROUND

2.1. FPM as an inverse problem

Consider an unknown object with a complex transmission function
o(r), where r denotes the spatial coordinates at the object plane.
A total of N LED sources are used to illuminate the object. Each
illumination is treated as a local plane wave with a unique spatial
frequency k;, i € {1,...,N}. The exit wave from the object is de-
scribed by the product: u(r) = o(r)e'*™ which indicates that the
center of the sample’s spectrum is shifted to k; [26-28]. At the pupil
plane, the shifted Fourier transformation of the exit wave is further
filtered by the pupil function p(k). For a single illumination, the dis-
crete FPM model can be mathematically described by the following
inverse problem
y=|Hs(z)?+e, with H 2 F.'diag(P)SF, (2)
where s(x) =e'® denotes the discretized transmittance, with & € R"
being the vectorized representation of the desired object properties,
y €R™ represents the corresponding low-resolution light-intensity
measurements, and e is the noise vector. The operator | - | computes
the element-wise absolute value. The complex matrix H € C"™*"
is implemented by taking the Fourier transform (F,) of the object,
shifting and truncating the low frequency region (.S), multiplying
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Algorithm 1 PnP-APGM

Algorithm 2 PnP-SPGM

input: 2°=s°v>0,0>0, and {qx }ren

:for k=1,2,... do

2P b7t -4 Vd(sh )

x" < denoise, (2¥)

s¥—ah + ((qr-1—-1)/qr) (2" — 2" 1)
end for

SARRANE -

1: input: «°=3s° v>0,0>0, {qr}ren, and B>1
2: for k=1,2,... do

3: 2P st Vd(sFTY)

4: x" < denoise, (2*)

5 st a4 ((ge— 1) g (@ — 2t 1)
6: end for

it by a pupil function in the frequency domain (P), and taking the
inverse Fourier transform (F.,”1) with respect to the spectrum.

In practice, the inverse problem is often reformulated as (1) us-
ing a quadratic data-fidelity term

d(z)=|||Hs()* —yl3. 3)

Examples of popular regularizers in imaging include the spatial
sparsity-promoting penalty () £ A||||: and total variation (TV)
penalty r(z) £ A||Dz||1, where A>0 is the regularization param-
eter and D is the discrete gradient operator [1]. Note that the final
objective in FPM is nonconvex due to the absolute value operator in
the data-fidelity term (3).

APGM and ADMM are two widely-used proximal algorithms
for dealing with non-differentiable regularizers. The associated key
operation is the proximal operator

proxw(z)éargmin{%Hm—z”%—i—’yr(m)}, 4
xeCn

which is mathematically equivalent to an image denoiser formulated
as a regularized optimization [12]. The algorithms differ from each
other in their treatment of the data-fidelity. Whereas APGM com-
putes the gradient Vd, ADMM relies on the corresponding proximal
operator prox, 4. In the context of FPM, we have

Vd(z)=[V¥ ()]  diag(¥ (z)) (¥ (x) —y) 3
with ¥ (z)2 Hs(x), V¥(x)=diag(iexpiz))H', (6)

where T denotes the conjugate transpose, and
. [1
prox () =argmin { =l + 1 E1s(2) P - v )
ZeRN

Because the data-fit in FPM is not convex, the optimization in (7) is
difficult to solve. Additionally, the calculation of (7) is computation-
ally expensive when the number of measurements is large.

2.2. Denoiser as a prior

Since the proximal operator is mathematically equivalent to regu-
larized image denoising, the powerful idea of Venkatakrishnan et
al. [12] was to consider replacing it with a more generic denois-
ing operator denoise, (-) controlled by o >0. In order to be back-
ward compatible with the traditional optimization formulation, this
strength parameter is often scaled with the step-size as o =/, for
some parameter A > 0.

Recently, the effectiveness of PnP was extended beyond the orig-
inal ADMM formulation [12] to other proximal algorithms such as
primal-dual splitting and PGM [20-22]. The formulation of PnP
based on APGM is summarized in Algorithm 1, where we introduce
a sequence that controls the shift between APGM and PGM. When

the following updates is adopted g + 4 (1+/1+44?_,) the APGM
is used. On the other hand, if gy, is set to one for any k£ € N, the stan-
dard PGM is considered. As the APGM is known to converge faster,
we design the PnP-SPGM-FPM based on the APGM formulation of
PnP.

The theoretical convergence of PnP-PGM was analyzed in a re-
cent paper [29] for convex and differentiable d(x). It was shown that
the PnP-PGM converges to a fixed point ™ at the rate of O(1/t) if
denoise, (-) is a f-averaged operator.

3. PROPOSED METHOD

We now introduce the online algorithm PnP-SPGM-FPM and de-
scribe its advantages over PnP-APGM. In FPM, the data-fidelity
term d consists of a large number of component functions

J
d(e)=Eld; (@)) = 3" d; (@), ®

where each d; typically depends only on the subset of the measure-
ments y. Note that in the notation (8), the expectation is taken over
a uniformly distributed random variable j € {1,...,J}. The compu-
tation of the gradient of d,

J
Vd(@)=E[Vd (@)]= 3" Vd;(a). ©

scales with the total number of components J, which means that
when the latter is large, the classical batch PnP algorithms may be-
come impractical in terms of speed or memory requirements. The
central idea of PnP-SPGM-FPM, summarized in Algorithm 2, is to
approximate the gradient at every iteration with an average of B < J
component gradients

B
- 1
Vid(z) =5 >V, (z), (10)
b=1
where ji1,...,7B are independent random variables that are dis-
tributed uniformly over {1,...,J}. The minibatch size parameter

B>1 controls the number of gradient components used at every
iteration. Note that, when the d(«) is convex and Lipschitz contin-
uous, the PnP-SPGM-FPM is shown to converge to a fixed point ™
at the worst-case rate of O(1/+/1) [29].

4. NUMERICAL VALIDATION

In this section, we validate our PnP-SPGM-FPM on simulated
and experimental data by considering two representative denoisers:
TV [1] and BM3D [4]. Note that our focus is to demonstrate the
effectiveness of the proposed PnP method for FPM rather than to
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Fig. 1: Visual comparison of the reconstructed images of Cameraman obtained by PnP-SPGM-FPM and PnP-APGM. Minibatch B =60
was used in the simulation. The first column (Original) shows the original image. The second column (NoReg-Batch) presents the result
of PnP-APGM using no regularizer. The third (NoReg-Online), fourth (TV-Online) and fifth (BM3D-Online) columns present the results
of PnP-SPGM-FPM using no regularizer, using TV and using BM3D, respectively. The last column (BM3D-Full) shows the result of PnP-
APGM using BM3D and all 293 measurements. Each image is labeled with its SNR value with respect to the original image.
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Fig. 2: Evolution of average SNR across iterations for batch and on-
line PnP algorithms using different priors. The corresponding labels
are shown at the bottom-right corner inside the plot. The purple dot-
ted line, BM3D-Full, indicates the performance when using all 293
measurements. Note that BM3D-Online achieves the SNR perfor-
mance of BM3D-Full at a lower computational cost.

test different denoisers, although the algorithm is readily compatible
with other state-of-the-art denoising methods. For simplicity, we use
terms BM3D-Online (Batch), TV-Online (Batch), and NoReg-Online
(Batch) to refer to the PnP-SPGM-FPM (PnP-APGM) with BM3D
denoiser, with TV denoiser, and with no regularizer, respectively.

4.1. Experimental Setup

We set up the simulation to match the FPM system used for the ex-
perimental data [27]. The sample is placed 70 mm below a 32 x 32
surface-mounted LED array with a 4 mm pitch. All LED sources
generate light with a wavelength 513 mm and the bandwidth 20 nm.
We individually illuminate the sample with 293 LEDs centered in
the array and record the corresponding intensity measurements with
a camera placed under the sample. The numerical aperture (NA) of
the objective is 0.2 [27]. We achieve the synthetic NA of around 0.7
by summing the NA of the objective and illumination.

4.2. Benefits of PnP-SPGM-FPM

We first quantitatively analyze the performance of PnP-SPGM-
FPM by reconstructing six common gray-scale images discretized
to 500 x 500 pixels: Cameraman, House, Jet, Lenna, Pepper and
Woman. The simulated measurements were obtained by solving

20 q
BM3D-Online

BM3D-Full

Avg. SNR

0 ] 5000
Time (second)

Fig. 3: Comparison between BM3D-Online and BM3D-Full for a
fixed reconstruction time. The average SNR is plotted against the
time in seconds for both algorithms. BM3D-Online uses only 60
measurements per iteration, while BM3D-Online uses all 293 mea-
surements. The lower per iteration cost leads to a substantially faster
convergence of BM3D-Online.

the forward model defined in (2). Additionally, the measurements
were corrupted by an additive Gaussian noise (AWGN) correspond-
ing to 40 dB of input signal-to-noise ratio (SNR). The quantitative
evaluation of reconstruction results is also based on SNR defined as

NR (dB) £ 101 ells 11
SNR (dB) £ 10l0g (7= ). (11)
where the  and x are the reconstructed and ground truth images,
respectively. We use average SNR to indicate the SNR averaged over
all the test images. In simulations, all algorithmic hyperparameters
were optimized for the best SNR performance with respect to the
original image.

Figure 2 illustrates the evolution of average SNR across iter-
ations for different priors and PnP variants. With the minibatch
B =60, the online algorithms randomly select different subset of
measurements at each iteration, whereas the batch algorithms use
the same fixed 60 measurements in the reconstruction. Hence, as ex-
pected, by eventually cycling through all the measurements, NoReg-
Online achieves a higher average SNR than NoReg-Batch, which
only uses the fixed 60 illuminations. Additionally, the performance
is further enhanced by using priors. For example, TV-Online and
BM3D-Online increase the average SNR from 18.48 dB to 19.42
dB and 19.74 dB, respectively. A visual illustration on Cameraman
is presented in Figure 1, where BM3D-Full is shown as reference.
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Fig. 4: Comparison of online and batch algorithms on the FPM dataset containing HeLa cells.

Each algorithm uses the budget of 60

measurements per iteration. The first row illustrates the results of NoReg-Batch, TV-Batch, and BM3D-Batch. The second row shows
NoReg-Online, TV-Online, and BM3D-Online. Visual difference are illustrated by the white rectangles drawn inside the images. The green

arrows highlight the artifacts.

We observe that, even with B =60, the solution of BM3D-Online is
only 0.25 dB lower than BM3D-Full, which denotes the batch PnP
algorithm using all 293 measurements.

Figure 3 compares the average SNR performance of online and
batch PnP algorithms within a fixed run-time. In the test, BM3D-
Online uses only 60 measurements per iteration, while BM3D-Full
uses all 293 measurements. The lower per iteration cost makes the
reconstruction of BM3D-Online substantially faster than that of its
batch rival. In particular, the averaged single-iteration run-time of
BM3D-Online and BM3D-Full was 9.07 seconds and 19.66 seconds,
respectively. We also note that BM3D-Online and BM3D-Full even-
tually converge to the same average SNR, which agrees with the
plots in Figure 2. Additionally, PnP-SPGM-FPM achieves a substan-
tial speedup due to its reduction in per-iteration computational com-
plexity, which makes the algorithm applicable to very large datasets.

4.3. Validation on real data

We now validate the performance of PnP-SPGM-FPM on experi-
mental FPM data. The sample used in the experiment consists of the
human cervical adenocarcinoma epithelial (HeLa) cells [27]. The
system corresponds to the FPM described in Section 4.1 with total
293 measurements for reconstruction.

Figure 4 compares the images of HeLa cells reconstructed by
PnP-SPGM-FPM and PnP-APGM. Each image has the resolution of

900 x 900 pixels. The green arrows in the white rectangles high-
light the artifacts. We consider the scenario with a limited memory
budget sufficient only for 60 measurements. Since batch algorithms
use a fixed subset of measurements, they produce strong unnatural
features, such as the horizontal streaking artifacts in NoReg-Batch.
Both TV-Batch and BM3D-Batch mitigate this artifact by using pri-
ors, but they generate blockiness and vertical grids in the cell, re-
spectively. Online algorithms generally improve the visual quality
by making use of all the data. Finally, BM3D-Online alleviates the
artifacts and reconstructs a high-quality image, while NoReg-Online
and TV-Online still have streaking artifacts and blockiness.

5. CONCLUSION

In this paper, we propose a novel online plug-and-play algorithm
for the regularized Fourier ptychographic microscopy. Numeri-
cal simulations demonstrate that PnP-SPGM-FPM converges to
a nearly-optimal average SNR in a shorter amount of time. The
experiments for FPM confirm the effectiveness and efficiency of
PnP-SPGM-FPM in practice, and shows its potential for other imag-
ing applications. More generally, this work shows the potential
of PnP-SPGM-FPM to solve inverse problems beyond traditional
convex data-fidelity terms.
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