
TEACHING PRACTICAL DSP WITH OFF-THE-SHELF HARDWARE AND FREE
SOFTWARE

Eric Bezzam, Adrien Hoffet, Paolo Prandoni

Audiovisual Communications Laboratory, École Polytechnique Fédérale de Lausanne, Switzerland

ebezzam@gmail.com, {firstname.lastname}@epfl.ch

ABSTRACT
In this paper we describe our approach to teaching applied
digital signal processing (DSP) using freely-available soft-
ware and inexpensive off-the-shelf hardware components.
The pedagogical framework is built around simple real-time
audio processing algorithms that provide immediate and en-
gaging feedback to the students. At the same time, our end
goal is to build a learning module that can be easily repro-
duced by fellow instructors and used in our Massive Open
Online Course (MOOC). We use Python for the initial algo-
rithmic prototyping and then transition to a hardware imple-
mentation using an STMicroelectronics’ Nucleo-64 core with
Adafruit I/O breakout boards. We employ modern documen-
tation tools based on Git and Markdown in order to share the
material and the exercises, allowing students and educators to
access, reproduce, and contribute changes to the content.

Index Terms— Digital signal processing, education, off-
the-shelf hardware, freely-available software, audio

1. INTRODUCTION

A common problem facing most signal processing instruc-
tors today is finding a way to bridge the gap between the
theory and the practice of DSP. The task is elusive because,
while the theoretical fundamentals of the discipline are well-
established, it is very hard to formalize a set of “best prac-
tices” that can expose the students to the fine points of prac-
tical implementations. At the same time, one would like to
avoid the pitfalls of focusing too much on the specifics of a
particular hardware and software platform. Ideally, one would
like to borrow a page from software “hackers” and be able to
use an exploratory, hands-on fashion to familiarize students
with the key aspects of real-world signal processing: for in-
stance, fixed-point arithmetic, direct memory access (DMA)
transfers, and the inter-IC sound (I2S) protocol. To this end,
two requisites are paramount for a practical, accessible, and
reproducible DSP education module, especially in the context
of remote education:

The authors would like to thank STMicroelectronics for kindly providing
a supply of Nucleo boards.

1. the tools must be industry-level;
2. only low-cost, off-the-shelf components and freely-

available software should be considered.

At the Audiovisual Communications Laboratory (LCAV) of
EPFL, we have curated a hardware and software kit that meets
the above criteria. We have developed a teaching module
(freely available online) that gently takes students from the
familiar environment of theory and higher-level language pro-
totyping to the realities of hardware-based real-time imple-
mentations. The main features of our approach are:

• an exposure to the key “tricks” and limitations of real-
world DSP using fun applications in audio signal pro-
cessing;
• the use of modern documentation tools in order to en-

courage collaborative efforts in designing exercises;
• the possibility to experience the main lessons in the

module even without the proposed hardware, i.e. solely
with a laptop running a simulation environment in
Python.

The documentation for the module and the associated exer-
cises are available online [1, 2]. For obvious reasons, the
exercise solutions are not public but can be provided upon
request.

The rest of this paper is structured as follows: in the next
section we provide an overview of the decision process that
led us to our final hardware and software choices, taking into
account the existing efforts by fellow institutions and educa-
tors. In Sec. 3, we describe the suggested curriculum that
motivates key lessons in DSP through audio applications. In
Sec. 4, we introduce the documentation tools that allow oth-
ers to access and modify the content to their liking. In Sec. 5,
we reflect on the usage of the proposed exercises at EPFL. In
Sec. 6, we provide concluding remarks.

2. HARDWARE AND SOFTWARE OVERVIEW

2.1. Previous Work

Recently, thanks to the individual efforts of motivated educa-
tors, several kits and exercises have been designed to expose

7660978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

university students to practical aspects of DSP [3, 4, 5]. At
the same time, industrial kits are also available for education
and training [6]. An extensive overview of various develop-
ment kits is presented in [7]; to summarize their findings, we
can identify three common hardware choices:

• FPGA development boards, e.g. by Altera [8] and Xil-
inx [9].

• inexpensive single-board computers ($25 – $150), such
as Raspberry Pi [10], BeagleBone Black [11], and
Wandboard [12].

• single-board microcontrollers (less than $50), such
as Arduino boards [13], STMicroelectronics’ (STM)
Nucleo-64 boards [14], and TI’s Launchpad develop-
ment kits [15].

Examining these options in order, working with FPGA-based
boards demands a comfortable grasp of hardware descrip-
tion languages. These skills are beyond the scope of exer-
cises meant to supplement a (largely theoretical) signal pro-
cessing course. Similarly, single-board computers shift the
focus away from DSP and put it on the underlying operat-
ing system (OS). For these reasons, we chose to go with a
single-board microcontroller. Several universities have used
the Arduino platform due to its ease-of-use and widespread
popularity. Generally, however, in order to support analog
input/output (I/O), these projects involve the design and use
of custom shields [3, 4] which greatly limits the ease of re-
producibility for the resulting kit. Additionally, the default
Arduino IDE is a far cry from professional tools. Commer-
cial kits such as TI’s Launchpad, on the other hand, while
industry-level in nature, have a much higher price point (on
the order of $200 at the time of writing). This presents a sig-
nificant barrier to adoption for beginners and educators. Even
disregarding price, such kits often lack user-friendly software,
as noted by [16], which led to the development of the WinDSK
software. However, it is only available for Windows OS and
we strive for maximum OS-independence.

2.2. Microcontroller and Breakout Boards

Our final choice rested with a single-board microcontroller
from STM’s Nucleo-64 family: the NUCLEO-F072RB [17].
At the time of writing, the board is listed as “Active” and can
be purchased for $10.99 on Digi-Key. Our audio I/O relies
on the I2S protocol [18]; we thus require two I2S buses for
the microphone input and the stereo decoder output. We use
Adafruit’s I2S MEMS Microphone Breakout and I2S Stereo
Decoder, which are both priced at $6.95 at the time of writ-
ing [19, 20]. Together with the jumper wires and power cable,
priced at $3.95 [21] and $2.95 [22] respectively, our hardware
kit comes to a total of $31.79 (excluding shipping costs). Our
goal is to provide a low-cost “reference design” for educa-
tors and interested individuals, especially in the context of our
MOOC effort [23, 24], which has a great following in coun-

Fig. 1. NUCLEO-F072RB with Adafruit microphone and
DAC breakout boards wired together.

tries with disadvantageous currency exchange rates. Addi-
tionally, while it is difficult to predict whether a certain piece
of hardware will be discontinued,1 STM has a ten-year com-
mitment for its boards, which provides a clear visibility on
our project’s lifespan.

Both STM’s family of Nucleo-64 boards and TI’s Launch-
pad development kits rely on Eclipse-based IDE’s: System
Workbench for STM32 (SW4STM32) [25] and Code Com-
poser Studio [26] respectively. We opted for STM’s Nucleo
boards as their software toolchain includes an additional pro-
gram called STM32CubeMX [27], which significantly simpli-
fies the process of setting up and producing the initialization
code for I/O peripherals. We are therefore able to strike a
balance between convenience and exposure to industry tools.

2.3. Software

Before the C implementation on the boards, we have the stu-
dents understand and prototype the tasks in Python, and in a
manner as close as possible as would be done with the board,
e.g. for-loops instead of array operations and fixed-point in-
stead of floating-point. This makes the implementation on
the board primarily that of porting Python to C. Moreover,
for those who are not able to obtain the hardware, the exer-
cises can be done purely in Python, while still learning the
key practical DSP lessons. A template has been prepared in
Python with the sounddevice library [28] for users to test their
implementations with their laptop’s sound card.2

As previously mentioned, STM provides a software called
STM32CubeMX, which greatly simplifies the process of set-
ting up and producing the initialization code for I/O peripher-
als. It is a graphical tool which allows the user to enable and
setup different protocols, e.g. I2S as is needed for our appli-
cations, and general purpose input/output (GPIO) pins of the
microcontroller. Once the desired configuration is finished,
the necessary C initialization code can be generated through

15 out of 28 kits / boards were discontinued from the 2016 study in [7].
2In [2]: /scripts/_templates/rt_sounddevice.py

7661

Offline demo

THEORY PROTOTYPE PROTOTYPE IMPLEMENT
Simulated real-
time with laptop

Real-time with laptop
and sounddevice

Microcontoller

Fig. 2. Learning pipeline.

STM32CubeMX and used in SW4STM32 with the user’s appli-
cation code. Although we use the NUCLEO-F072RB, other
boards from STM will be compatible with the presented ex-
ercises as long as they can be used with STM32CubeMX and
SW4STM32 and have two I2S buses.

3. LEARNING WITH AUDIO

In order to keep up the students’ motivation throughout the
sometimes frustrating aspects of programming a microcon-
troller, we developed a series of exercises with increasing
levels of difficulty centered around the idea of developing a
“voice scrambler,” that is, a gadget that can be used to mod-
ify a speaker’s voice in real-time. There are various tech-
niques to achieve this, from simple amplitude modulation to
more complex pitch shifting based on granular synthesis or
LPC coding; the theory and the algorithms are available in
the learning module in the form of a Jupyter Notebook [29].

Since Python is used in the prototyping phase, the main
DSP lessons are not overwhelmed by embedded systems de-
tails. As we are targeting undergraduate students in a rela-
tively theoretical signal processing course, the emphasis of
our exercises is on learning DSP skills for real-time process-
ing. This is first done in a simulation environment with a
WAV file that is read in a block-based fashion.3 The goal of
the students is to determine the initialization and processing
code to apply the effect. The provided script writes the output
signal to an array in a block-based fashion and subsequently
to a new WAV file, which can be “debugged” by listening to it
in order to determine if the processing performed the desired
effect. When the output WAV file demonstrates the correct-
ness of the processing, students can either use the sounddevice
template to directly attempt their implementation in real-time
with their laptop’s sound card or proceed to implementing the
application in C on the microcontroller. At this point, the im-
plementation in C should largely be porting Python to C. The
full learning “pipeline” is shown in Fig. 2.

As an example, let’s consider the exercise of implement-
ing the alien voice effect, that is, a voice scrambler based on
simple amplitude modulation.

1. The students are first introduced to the theory behind
the implementation, namely, multiplying the input sig-
nal with a sinusoid:

y[n] = x[n] · sin(2π(fc/fs)n), (1)

3As in [2]: scripts/_templates/rt_simulated.py

where fc is the modulation frequency, fs is the sam-
pling frequency, and n is the time index of samples that
are taken at regular intervals of 1/fs. This operation
can be done in a single line with Python, which is pro-
vided to the students [29]. This offline implementation
serves as a useful reference when debugging the output
of their approach.

2. Since the algorithm is extremely simple, the focus can
move completely to the finer details of a real-time im-
plementation. For instance, we introduce the concept
of lookup tables for the efficient computation of the
sinusoid’s values and we introduce the notion of state
variables for the table lookup. On the signal process-
ing side, we remark the need to remove any DC offset,
which would introduce a disrupting buzz in the out-
put. With this new knowledge in mind, the students are
asked to implement the alien voice effect in the simu-
lated Python environment.

3. Once students have successfully implemented the ef-
fect, i.e. the output WAV file from the simulation en-
vironment matches that of the offline implementation,
they can attempt to run their solution in real-time with
their laptop’s sound card and the sounddevice library.
At this point, students may realize if their implemen-
tation can really run in real-time, or if additional opti-
mization is required to cut down on the processing at
each block.

4. With the effect running successfully in real-time on
their laptop, the students can proceed to implement-
ing it in C on the microcontroller. At this point, the
students will have most of the implementation already
complete and simply need to port their code to C and
possibly implement any macros that might be useful.

This example demonstrates the process that we encourage
when approaching a new application. In the following sub-
section, we give an overview of the proposed exercises and
the corresponding learning objectives.

4. SHARING THE MATERIAL

Proper online dissemination of the course material is neces-
sary for adoption by others. It also allows educators to obtain
feedback on the material they have prepared. However, other
than email communication, other DSP kits typically offer no
other means for collaboration, modification, and feedback.
Education in data science and machine learning has taken full
advantage of modern collaboration and documentation tools4

and we will follow these best practices as well.
There are numerous ways to create and host material on-

line. We chose Markdown for writing content due to its ease-
of-use, requiring very minimal knowledge about web devel-

4For example, this introductory course to data science at UC Berke-
ley [30] and the corresponding repository [31].

7662

Exercise Learning Objective(s)

Overview and installation
• Familiarize students with STM32’s software tools (STM32CubeMX and
SW4STM32) with a fully-guided Blinking LED example.

Audio passthrough

• Introduce MEMS microphones, DACs, and the I2S protocol.
• How to program pins and define useful macros to access/set their values in C.
• Reading datasheets and wiring components!
• Terminology: direct memory access (DMA) callbacks, sample, frame, buffer.

Alien voice effect
• Problems/solutions that arise in real-time implementations: lookup tables, state
variables, fixed vs. floating point, DC offset.
• Setting up a timer for benchmarking.

Filter design
• Simple high-pass filter from previous exercise motivates better design.
• Finite impulse response (FIR) vs. infinite impulse response (IIR), circular buffer.

Pitch shifting with granular
synthesis

• Multiple lookup tables, tapering window (for smoothing discontinuities between
processed blocks), state variables.

Table 1. Proposed curriculum with expected learning objectives.

opment. With all the material in Markdown files, the next
choice is in deciding the platform for hosting the content.
Free possibilities include GitHub Pages, GatsbyJS, Netlify,
and GitBook. They all allow synchronization with a GitHub
repository so changes and suggestions can be made by nu-
merous collaborators and even students! At the moment, we
use GitBook due to a few attractive features: simple layout,
the ability to edit directly from the browser, and easy-to-use
plug-ins, e.g. for embedding formulas and code.

Finally, our goal is to include the material as part of
LCAV’s ongoing MOOC offering in DSP [23, 24]. The class,
free of charge and online since 2013, has totaled over 50,000
enrollments since its inception. We feel that a hands-on mod-
ule would represent a particularly useful addition to the online
curriculum especially for students who are seeking to expand
their marketable skill set. The low price point of our refer-
ence hardware kit and the free availability of the associated
software tools will allow students to experiment with applied
DSP everywhere in the world.

5. INITIAL TEACHING EXPERIENCE

The first tryout of this applied DSP learning module took
place during the Spring 2018 edition of the Bachelor course
“Signal processing for communications” (COM-303) at
EPFL [32]. Five practical sessions (see Table 1) were offered
as optional ungraded coursework, mainly in the interest of
receiving an initial feedback from participants. Each session
lasted two hours, during which we would present relevant the-
ory in the first (roughly) 30 minutes, and the students worked
individually or in pairs for the remainder of the session. Out
of 84 students registered for the course, 22 joined for the first
exercise session; students were able to install the necessary
software on Windows, MacOS, and Linux. For the second
session only 14 students remained: wiring the components
proved to be a true challenge for a majority of the students,

mostly Computer Science and Communication Systems ma-
jors, as this type of work is not typical of their curriculum. In
the third session, nine students returned but only two of them
were able to implement the effect on the microcontroller.
This low success rate and the overall dropout rate motivated
us to rethink our teaching approach.

Clearly, the difficulty in achieving a working prototype
after a two-hour session was the major threat to motivation.
To ameliorate things we added the Python simulation com-
ponent to the implementation and learning pipeline, as dis-
cussed earlier. The additional benefit was that the simulation
environment would allow students who could not complete
the first module on the board to still participate in the subse-
quent sessions. Despite our additional effort, however, only
five students attended the last class. Among possible con-
causes for the high dropout rate were certainly the fact that
the class was optional and that the increasing workload to-
wards the semester’s end deterred students from continuing
with the exercises. We are eagerly waiting to offer the mate-
rial in our MOOC to receive a much more substantive amount
of feedback from a diverse user base.

6. CONCLUSIONS

In this paper, we presented a pedagogical module designed
to teach practical aspects of DSP, using an STM32 Nucleo
board and freely-available and OS-independent software. The
hardware component, in spite of its very low cost, still ex-
poses students to industry-level tools. Moreover, the module
is designed so that, even in the absence of hardware, the main
lessons in real-world DSP can still be appreciated. The mod-
ule has been offered experimentally at EPFL and will soon be
available as part of our MOOC. The material is freely avail-
able to instructors worldwide, hoping to foster adoption and
receive feedback from fellow DSP instructors.

7663

7. REFERENCES

[1] “DSP Labs,” https://lcav.gitbook.io/
dsp-labs/.

[2] “DSP Labs (repository),” https://github.com/
LCAV/dsp-labs.

[3] Jaldén Joakim, Xavier Casas Moreno, and Isaac Skog,
“Using the Arduino Due for teaching digital signal pro-
cessing,” in Proc. IEEE Int. Conf. Acoust. Speech, Sig-
nal Process., 2018, pp. 6468–6472.

[4] William J. Esposito, Fernando A. Mujica, Domingo G.
Garcia, and Gregory T.A. Kovacs, “The Lab-In-A-Box
project: An Arduino compatible signals and electronics
teaching system,” in IEEE Signal Process. Signal Pro-
cess. Educ. Work., 2015, pp. 301–306.

[5] Clark Hochgraf, “Using Arduino to teach digital sig-
nal processing,” in Proc. ASEE Northeast Sect. Conf.,
Atlanta, GA, USA, 2013.

[6] “TMS320C6748 DSP Development Kit (LCDK),”
http://www.ti.com/tool/tmdslcdk6748.

[7] DongYuan Shi and Woon-Seng Gan, “Comparison of
difference development kits and its suitability in signal
processing education,” in Proc. IEEE Int. Conf. Acoust.
Speech, Signal Process., 2016, pp. 6280–6284.

[8] “All FPGA Main Boards,” https://
altera-kits.terasic.com/.

[9] “Boards, Kits, and Modules,” https://www.
xilinx.com/products/boards-and-kits.
html.

[10] “Raspberry Pi,” https://www.raspberrypi.
org/.

[11] “BeagleBone Black,” https://beagleboard.
org/black.

[12] “Wandboard,” https://www.wandboard.org/.

[13] “Arduino Products,” https://www.arduino.cc/
en/Main/Products.

[14] “STM32 MCU Nucleo,” https://www.
st.com/en/evaluation-tools/
stm32-mcu-nucleo.html.

[15] “TI LaunchPadTM development kits,” http://
www.ti.com/tools-software/launchpads/
overview.html.

[16] M.G. Morrow and T.B. Welch, “winDSK: a Windows-
based DSP demonstration and debugging program,” in
Proc. IEEE Int. Conf. Acoust. Speech, Signal Process.,
2000, pp. 3510–3513.

[17] “NUCLEO-F072RB,” https://www.st.com/en/
evaluation-tools/nucleo-f072rb.html.

[18] Philips Semiconductors, “I2S bus specification,”
https://www.sparkfun.com/datasheets/
BreakoutBoards/I2SBUS.pdf, 1996.

[19] “Adafruit I2S MEMS Microphone Breakout -
SPH0645LM4H,” https://www.adafruit.
com/product/3421.

[20] “Adafruit I2S Stereo Decoder - UDA1334A Break-
out,” https://www.adafruit.com/product/
3678.

[21] “Premium Female/Female Jumper Wires - 40 x 6 inch,”
https://www.adafruit.com/product/266.

[22] “USB cable - 6 inch A/MiniB,” https://www.
adafruit.com/product/899.

[23] Thomas A. Baran, Richard G Baraniuk, Alan V. Oppen-
heim, Paolo Prandoni, and Martin Vetterli, “MOOC ad-
ventures in signal processing,” IEEE Signal Processing,
pp. 22, 62–83, 2016.

[24] “DSP MOOC on Coursera,” https://www.
coursera.org/learn/dsp.

[25] “System Workbench for STM32: free IDE on Win-
dows, Linux and OS X,” https://www.st.com/
en/development-tools/sw4stm32.html.

[26] “Code Composer Studio (CCS) Integrated Develop-
ment Environment (IDE),” http://www.ti.com/
tool/CCSTUDIO.

[27] “STM32CubeMX,” https://www.st.com/en/
development-tools/stm32cubemx.html.

[28] Matthias Geier, “Play and Record Sound with
Python,” https://python-sounddevice.
readthedocs.io, 2018.

[29] “Real-Time Voice Transformers (Jupyter Notebook),”
http://nbviewer.jupyter.org/github/
prandoni/COM303/blob/master/voice_
transformer/voicetrans.ipynb.

[30] “Principles and Techniques of Data Science,” https:
//www.textbook.ds100.org/.

[31] “Principles and Techniques of Data Science (repos-
itory),” https://github.com/DS-100/
textbook.

[32] Paolo Prandoni and Martin Vetterli, Signal Process-
ing for Communications, EPFL Press, CRC, Lausanne,
2008.

7664

		2019-03-18T11:07:55-0500
	Preflight Ticket Signature

