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ABSTRACT

Gaining a better understanding of how people move about and in-
teract with their environment is an important piece of understand-
ing human behavior. Careful analysis of individuals’ deviations or
variations in movement over time can provide an awareness about
changes to their physical or mental state and may be helpful in track-
ing performance and well-being especially in workplace settings.
We propose a technique for clustering and discovering patterns in
human movement data by extracting motifs from the time series of
durations where participants linger at different locations. Using a
data set of over 200 participants moving around a hospital for ten
weeks, we show this technique intuitively captures local temporal
relationships between hospital rooms and also clusters them in a
fashion consistent with the room type labels (e.g. lounge, break
room, etc.) without using prior knowledge. Machine learning fea-
tures derived from these clusters are empirically shown to provide
information similar to features attained using domain knowledge of
the room type labels directly when predicting mental wellness from
self-reports.

Index Terms— Human movement patterns, motif analysis,
stress, affect, machine learning

1. INTRODUCTION

Investigations in human movement patterns is garnering more atten-
tion in industry and among researchers as modern technologies have
enabled wireless and mobile tracking of individuals both indoors and
outdoors. Gaining a better understanding of how people move about
and interact with their environment, which often includes other peo-
ple, has implications for architectural design and making effective
use of space. It also has applications in human wellness tracking
and understanding how stress, affect, and anxiety are impacted and
modulated by these movement patterns as they change over space
and time (e.g. ambulatory work performance at different locations
and times). This work proposes a method for analysis of human
movement patterns that can, without having prior knowledge about
a data set, reveal hidden relationships between the various locations
people visit and also provide useful features for machine learning of
constructs impacted by human movement.

Many research efforts over the past decade have examined hu-
man movement patterns. Some of these have focused on localizing
people more precisely indoors [1, 2] while others have employed
density map analysis to discover points of interest from a time series
of locations [3] or reveal high traffic areas where people are more
likely to encounter each other [4, 5, 6]. These works offer insights
about how space is occupied and how likely people are to interact but
they provide no direct means for revealing latent similarities between
different locations. Other works have shown that human movement

patterns outdoors are unique for most individuals [7, 8] and also
in some cases that their trajectories can be predicted from motion
models and past observations [9, 10, 11]. These works too do not
explicitly provide algorithms for discovering relationships between
visited locations. Some research has proposed general methods for
discovery of motifs in multivariate time series [12] (based on SAX
[13]) which could be used to help uncover latent structure in loca-
tion data but requires careful selection of parameters that control the
windowing and binning of the time series. Our proposed technique
employs motif-based analysis but is instead data-driven and requires
little tuning.

This paper proposes a method for extracting latent clusters rep-
resenting patterns in how people spend time in different locations.
The use case data of our analysis comes from a study on individu-
als’ work place performance in a large hospital setting. We consider
human movement data captured by distributed proximity sensors in
known locations in the workplace and propose a form of motif anal-
ysis based on the amount of time individuals spend lingering in each
location (e.g. intensive care units, patient recovery rooms, break
rooms, etc.). This analysis yields motif clusters that capture the tem-
poral differences in location interaction patterns. The primary con-
tribution of this work is the proposed application of motif analysis
to the time series of linger durations of individuals per location. We
demonstrate that motif-based clusters derived from this analysis are
interpretable and correlate with human-produced labels of the loca-
tions. We also provide empirical evidence from machine learning ex-
periments that the features derived from our motif analysis capture
information similar to features derived from a priori known room
labels. Ultimately we show that the proposed data-driven methodol-
ogy infers intuitive clusters that provide useful features for machine
learning of constructs moderated by human movement patterns.

2. DATA SET

To test our approach, we use the TILES (Tracking Individual Per-
formance with Sensors) [14] data set from an initial ten-week data
collection of workers and their environment in a large hospital. This
study is still underway and the data is not yet widely available, so a
brief description is given here. Physiologic, environmental, proxim-
ity, behavioral and wellness data is gathered from hospital workers
who primarily provide patient care (nurses, technicians, etc.) and
is collected throughout the work day. While at work, participants
wear a Fitbit HR 2, OMsignal garment-based sensor, and a Jelly
smartphone which collectively track heart rate, heart rate variability,
motion, vocalized audio (anonymized), and many other physiologic
features. Other sensors deployed in the hospital environment and on
participants’ smartphones collect information about their proximity
to different rooms in the hospital and also their smartphone usage.
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Periodic self-reports are gathered from participants each day during
the 10-week period providing information about affect, stress, anxi-
ety, and many other physical and mental states. In total the data set
includes over 200 participants comprised of at least 120 females and
49 males aged between 21-65 years.

Since we focus in particular on motif analysis of proximity data
and prediction of mental wellness measures we only provide details
about these data streams. Participant proximity to different locations
within each nursing unit is tracked using Bluetooth advertisement
packets sent from a smartphone system [15] participants wear while
at work that is picked up by Bluetooth hubs installed throughout
the hospital. These hubs are located in key rooms including patient
rooms, medicine rooms, lounge and break rooms, nursing stations
(computer desks), and laboratories. The receiver signal strength in-
dicator (RSSI) gives a rough estimate of the proximity of each par-
ticipant to a particular hub. Figure 1 shows a blueprint layout of
one of the nursing units in the hospital and the circles indicate the
locations of the Bluetooth hubs. The circles are also shaded show-
ing an example frame in the time series of RSSI values at each hub
for a single participant standing at the “X”. RSSI values reported by
the hubs range from 135 (i.e. distant) to 193 (i.e. proximal). The
smartphones worn by participants emit advertisement packets every
three seconds for 15 seconds out of every minute. Data from the dis-
tributed Bluetooth hubs is aggregated by a server in the cloud over
two-second windows to produce a single time-stamped frame.

Fig. 1: A top-down view of a single nursing unit in the TILES data
set. Dots show the locations of Bluetooth hubs and the shade of the
dot indicates the RSSI values observed by each hub for an individual
emitting Bluetooth packets from a worn smartphone while standing
at the “X”.

The wellness data we also use for analysis in this paper is col-
lected via ecological momentary assessments sent to participants’
smartphones via text message. Participants fill out daily surveys and
on some of these days they are asked to provide information about
their current stress, anxiety, and positive and negative affect. Stress
and anxiety are both reported using a 5-point Likert scale. A short-
ened version of the Positive and Negative Affect Schedule (PANAS)
[16] is administered containing five questions each for both positive
and negative affect assessment. For our machine learning experi-
ments, we utilize a binary label derived from these self-reports using
a singular value-based projection method as described in [17].

3. METHOD

Our primary aim is to extract motifs from each time series of loca-
tions where participants linger. The data provided is a multivariate
time series of RSSI values from multiple Bluetooth hubs that are
within observing distance of a participant wearing a Bluetooth adver-
tising device. In this section, we describe our approach to denoising
and extracting approximate participant locations from the multiple
RSSI observations, and we also explain our method for computing
linger and motif time series using these locations.

3.1. Data Pre-processing

We preprocess the multivariate time series of RSSI values to reduce
the signal noise coming from two primary sources: the environment
and the aggregation of distributed observations over time. RSSI
strengths measured by hubs are generally inversely proportional to
the squared distance of the emitting device but can vary greatly in
crowded indoor environments due to signal absorption (by people)
and interference from signal reflections off of walls and other sur-
faces. Thus we filter our RSSI time series and only consider frames
in which the maximum RSSI value is above 160 (on a 135-193 scale)
which corresponds roughly to a maximum distance of six meters.
This improves our certainty that a participant is in close proximity to
a hub.

Each hub also independently records observations of received
Bluetooth packets from participants’ devices and sends them to a
server for frame-level aggregation. Because the system is designed
to report Bluetooth proximity in near real-time, it aggregates hub ob-
servations over two-second frames. Occasionally some observations
sent to the server are delayed and not aggregated into the frames to
which they belong. This results in spurious or distant (greater than
10 meters) hub detections in the time series that make a participant’s
approximate location appear to jump. We eliminate these impossi-
bilities by filtering out time series frames where the nearest hub (pre-
sumed location) of a participant appears to move faster than 5m/s
or where it jumps to a different floor or nursing unit in the hospital
and then back again.

3.2. Linger and Motif Time Series

With a pre-processed time series at an effective frame rate of four or
five observations per minute, we use the nearest hub (highest RSSI)
as an estimate of a participant’s location per frame. For each consec-
utive subsequence in the time series in which a participant is located
in the same room, we record the entry time, the location, and the
duration for which the participant stays (lingers) in the room. Since
we want to focus the analysis on periods where participants are in
one location (and presumed to be performing some task), we filter
out linger durations shorter than thirty seconds which eliminates pe-
riods where participants are merely in transit to some destination.
This procedure produces a new time series of linger durations and
approximate locations which we use to extract motifs.

Motifs of a fixed length are computed from the filtered time se-
ries of linger periods. In this work we focus on motifs of length three
because they capture interpretable and temporally local information
about the relative time spent in each room. The motifs are computed
as follows:

f : {2, ...,K − 1} → Z

t 7→ P (rank(lk−1, lk, lk+1))
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where k is the sample index, K is the total number of linger duration
samples, l is the linger duration time series, and P (·) is a function
mapping permutations of (1, 2, 3) to a unique integer. Each motif is
centered at index k and thus the motif encodes the relative amount of
time spent in a particular location compared to the previous and next
locations where a participant lingers. Because this motif definition
is based on the ranks, it is more robust to noisy variations in linger
durations.

3.3. Feature Extraction

We extract features for machine learning that measure differences
in motif patterns per participant, between participants of similar job
types, and across all participants. Motif distributions are aggregated
for each participant (indexed by i) and each of L locations over her or
his work shift (indexed by s) and stored in matrix M

(i)
s ∈ RL×W !.

W denotes the motif window size which is equal to three in our
work. The symmetric KL-divergence (DSKL) is used to measure
the differences in motif distributions and each feature is defined in
Table 1. These features aim to capture a participant’s daily deviation
in linger duration patterns.

4. EXPERIMENTS AND RESULTS

In order to validate our proposed motif-based features we perform
two experiments. First, we cluster the motif distributions per Blue-
tooth hub location and compare the clusters to the a priori known
room types. Second, we conduct simple machine learning experi-
ments with and without our proposed motif features and empirically
show that they capture approximately the same kind of information
as if the room types were known beforehand. Each of these steps is
described in detail below.

4.1. Motif Distribution Clustering

We compute the normalized motif distribution averaged across all
participants for each Bluetooth hub location:

N∑
j=1

S∑
s=1

I(j)s M
(j)
s

and then normalize each row so the sum of all row elements is one.
For each pair of rows (ri, rj) in this matrix we compute a similar-
ity measure 1 − e−DSKL(ri,rj) and construct a similarity matrix.
Each row and column corresponds to a unique hub location and we
perform agglomerative clustering to group the rows and columns
by similarity. Lastly, we traverse the resulting hierarchical cluster
tree one node at a time until the resulting partition contains at least
three groups with more than ten elements each. This iterative pro-
cess helps filter outlier hub locations whose motif similarities do not
cluster with other locations. Figure 2 shows the similarity matrix for
all 243 Bluetooth hubs and also the top three clusters resulting from
the partition.

4.2. Machine Learning Experiments

We predict mental wellness based on the daily self-reports from par-
ticipants mirroring the approach in [17] using SVD to combine the
stress, negative/positive affect, and anxiety self-report scores. The
result is a binary label with one value representing high stress, neg-
ative affect, and anxiety, and the other value representing low stress
and positive affect.

We use a random forest classifier learning model and features
from multiple physiologic data streams in the TILES data set for
prediction. For each feature we compute statistical functionals
(min/max, mean, variance, standard deviation, and quartiles) over
a four-hour window prior to each EMA survey response because,
as the authors of [17] observe, recent events have a stronger impact
on the self-reports. We focus only on these time segments that also
overlap with work shifts so we can test our new movement mo-
tif features. With these constraints, there are approximately 2000
samples across all participants.

All features are Z-normalized and minimum redundancy maxi-
mum correlation (mRMR) is employed to select the top 200 features
before model training, and Table 2 lists these top features. The data
is shuffled and randomly split into five partitions with one held out
for testing. We perform leave-one-subject-out cross-validation with
the data from four partitions and then predict on the held out parti-
tion. Each partition is used in turn as the held out set and we report
the average F1 scores over these five trials. The random forest clas-
sifier is tuned over a grid {80, 100, 150} for the number of trees and
{4, 10, 20} for the maximum depth of a tree and we find 100 trees
and a depth of 10 to be optimal. PySpark version 2.3.2 and MLlib
[18] are used to perform the machine learning tasks. Table 3 shows
the results from our binary label prediction experiments.

5. DISCUSSION AND FUTURE WORK

Surprisingly, the clusters produced using our proposed method align
quite well with the human-produced room type labels as shown in
Figure 2b. Nearly all of the medication rooms are grouped in the sec-
ond cluster while most patient rooms belong to the third. The second
cluster has a much higher density of motifs corresponding to people
spending the least amount of time lingering in its locations compared
to their temporal neighbors while cluster three corresponds to loca-
tions where people spend the most time. Though it makes sense for
most medication rooms to be in cluster two and many patient rooms
to be cluster three, this analysis draws attention to the fact that one
third of the nursing stations are used for small amounts of time while
the other two thirds are used for sustained periods of time. Verifica-
tion of this observation is beyond the scope of the paper, but the idea
emphasizes the utility of the motif-based approach for comparing
temporally local patterns of linger durations in different locations.

The results in Table 3 demonstrate foremost that mental wellness
prediction from this data (collected in a natural setting outside of a
well-controlled lab) is very difficult using standard physiologic fea-
tures and simple machine learning techniques. It also demonstrates
that proximity information, either derived from room labels or from
clusters produced by our motif-based analysis, does somewhat im-
prove the performance. In both cases, the gains are very similar sug-
gesting that the information captured using the proposed data-driven
motif analysis is similar to the knowledge-based features.

Our proposed technique for motif-based analysis offers intuitive
insights into human movement patterns around various locations in
the workplace and does so without requiring any prior information or
location labels. Potential limitations to the findings include the spa-
tial and temporal resolution of the data. A natural extension to this
work would use the same analysis on data collected using a higher
sampling rate and more precise indoor localization system to see if
the same results appear. Other interesting future research would in-
volve a more thorough investigation of the effects of using larger
motif lengths (W > 3) or using different motif models such as those
derived from visibility graphs or graph Fourier analysis.
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Feature Definition

Normalized motif distribution m
(i)
s = 11×LM

(i)
s /
(
11×LM

(i)
s 1W !×1

)
Difference from overall average DSKL

(
m

(i)
s , 1

N

∑N
j=1

1
S(j)

∑S
s=1 I(j)s m

(j)
s

)
Difference from personal average DSKL

(
m

(i)
s , 1

S(i)

∑S
r=1 I(i)r m

(i)
r

)
Difference from job type average DSKL

(
m

(i)
s , 1

N(T (i))

∑N
j=1 I(j)T (i)=T (j)

1
S(j)

∑S
s=1 I(j)s m

(j)
s

)
Table 1: Motif features computed from the aggregated motifs M (i)

s ∈ RL×W ! for participant i, work shift s, L total Bluetooth hub locations,
and motif window size W (W = 3 in our work). DSKL is the symmetric KL-divergence, N is the number of participants, S is the total
number of work shifts, T (i) denotes the job type of participant i, and I(i)s is an indicator function equal to one if participant i works during
shift s or zero otherwise. N(T (i)) and S(i) are symbolic simplifications denoting the number of participants with job type T (i) and the
number of work shifts for participant i respectively.

(a) (b)

Fig. 2: Figure 2a shows the motif similarity matrix for all 243 Bluetooth hub locations after the rows and columns have been reordered using
agglomerative clustering. The top three clusters including outliers are highlighted in Figure 2b and listed in diagonal order. The proportion
of labeled room types are also given for each cluster.

Device Features

Fitbit HR 2
Step count
Heart rate

Previous night’s sleep stage durations

OMsignal garment

Acceleration
Heart rate

Heart rate variability
Fat burn
Cadence

Breathing depth
Number of times sitting

reelyActive Owl-in-One
Bluetooth hub

Proportion time in room type
Linger motif distribution

Table 2: A list of the top 200 features and the devices from which
they are procured in the TILES data set. These features are selected
by mRMR for predicting a measure of each participant’s daily men-
tal wellness.

6. CONCLUSION

We propose a technique for clustering and discovering patterns in
human movement data in a workplace setting utilizing motifs ex-

Features F1 Accuracy
Fitbit, OMsignal, and motif features 0.56 0.58

Fitbit, OMsignal, and room type features 0.56 0.57
Fitbit, OMsignal 0.52 0.54

Table 3: Results from machine learning experiments using a ran-
dom forest classifier with different feature sets to predict each par-
ticipant’s daily mental wellness label.

tracted from a time series of linger durations at different locations.
Using a data set of over 200 participants moving around a hospital
environment for ten weeks, we show that this technique intuitively
captures temporal relationships between rooms and also successfully
clusters in a manner consistent with actual room type labels without
using this prior knowledge. This data-driven technique can quickly
aid in analysis by highlighting locations whose temporal linger dura-
tion patterns may differ from expectation. We have also shown that
simple features extracted from these motifs perform comparably to
features derived using the location labels directly, which suggests
they may be suitable for applications where domain knowledge of
a work environment is limited or unavailable. We believe this tech-
nique is simple and robust enough to generalize to other data sets,
possibly more broadly than indoor work settings.
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