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ABSTRACT
Due to the significant air pollution problem, monitoring and
prediction for air quality have become increasingly neces-
sary. To provide real-time fine-grained air quality monitoring
and prediction in urban areas, we have established our own
Internet-of-Things-based sensing system in Peking Univer-
sity. Due to the energy constraint of the sensors, it is preferred
that the sensors wake up alternatively in an asynchronous pat-
tern, which leads to a sparse sensing dataset. In this paper, we
propose a novel approach to predict the real-time fine-grained
air quality based on asynchronous sensing. The sparse dataset
and the spatial-temporal-meteorological relations are mod-
eled into the correlation graph, in which way the prediction
procedures are carefully designed. The advantage of the pro-
posed solution over existing ones is evaluated over the dataset
collected by our air quality monitoring system.

Index Terms— Air quality, fine-grained, real-time

1. INTRODUCTION

A recent report from the World Health Organization shows
that one in eight of total global deaths are due to air pollution
exposure [1]. Government agencies have defined the air qual-
ity index (AQI) to evaluate pollution degree where high con-
centration of fine particles is usually the main factor of a high
AQI. Traditional AQI observation stations can only provide a
coarse-grained and high-latency monitoring [2]. However, a
recent study shows that the distribution of fine particles could
vary within meters [3].

To make up for the above deficiency, it is recommended to
deploy numerous low-cost tiny Internet-of-Things (IoT) sens-
ing devices to monitor fine-grained air quality(mainly PM2.5

values) for the regions with complicated terrain [4]. There-
fore, we have designed a wireless sensor network system. The
massive commercial IoT sensors can monitor AQIs until the
batteries are dead. In this way, the real-time fine-grained mon-
itoring and prediction are achieved by the massive collected
data and the techniques like machine learning [5, 6].

However, since the outdoor battery-powered sensors have
limited energy [7, 8], it is preferred that the sensors wake
up alternately in an asynchronous way to prolong the life-
time of sensing network [9]. Based on the collected asyn-
chronous data, few existing methods can provide reliable fine-
grained AQI prediction. For instance, Long Short Term Mem-

ory network (LSTM) [5] can only be implemented with a syn-
chronous dataset rather than an asynchronous one. In addi-
tion, Multi-layer Perception (MLP) [6] and spatial-temporal
distance weighting interpolation (IDW) [10] do not perform
well based on asynchronous AQI data. This is because, MLP
is unable to reveal the spatial-temporal-meteorological rela-
tions among the AQIs in different points-of-interest (POIs),
and IDW is only an intuitive solution without learning from
massive collected data and the influence of the weather con-
ditions.

In this paper, we propose a novel scheme to conduct
the fine-grained and real-time prediction of AQI based on
asynchronous data collected by our monitoring system. By
designing the correlation graph (CG), we present the asyn-
chronous sensing data and the spatial-temporal-meteorological
relations. Based on the CG model, the prediction procedures
are carefully designed and an optimization problem arises. To
obtain the real-time fine-grained prediction results, we aim to
solve the optimization problem by an algorithm combining a
closed-form derivation and genetic algorithm. The advantage
of the proposed solution over existing ones is evaluated over
the dataset collected by our monitoring system.

The main contributions of our work are listed as follows:
1) We present our air quality system in Peking Univer-

sity based on massive IoT sensors, where asynchronous sens-
ing data are modeled into a spatial-temporal-meteorological
graph.

2) We propose a novel prediction algorithm for real-time
and fine-grained air quality based on sparse dataset.

3) We evaluate the performance gain of our approach over
existing methods based on real measured data.

The rest of our paper is organized as follows. Section 2
introduces the CG model. Section 3 specifies the prediction
procedures and applies appropriate methods to obtain real-
time and fine-grained prediction. Section 4 shows the simula-
tion results. Finally, conclusions are given in Section 5.

2. SYSTEM MODEL

In this section, we first introduce our air quality asynchronous
sensing system in Section 2.1. Then, the correlation graph is
constructed to model the asynchronous sensing data in Sec-
tion 2.2. The spatial-temporal-meteorological relations are
added into the CG as weighted edges in Section 2.3.
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2.1. Asynchronous Sensing System
We establish a wireless sensor network system for fine-
grained air quality monitoring. For power efficiency, the
deployed IoT sensors are programmed to asynchronously
monitor AQI (mainly PM2.5 values) until the batteries are
dead.

The IoT sensors have been deployed in the campus of
Peking University since Feb. 2018. Each sensor uploads the
AQI, the location and the time after monitoring [11]. In ad-
dition, weather conditions are collected from the website of
China Meteorological Administration [12]. All features are
preprocessed before being applied.

2.2. Correlation Graph for Asynchronous Data
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Fig. 1: An illustration of the Correlation Graph.

There are totally a number of M air quality sensors, de-
noted as {S1, · · · , Sm, · · · , SM}. Each sensor has a fixed 3D
spatial coordinate (xm, ym, zm). For fine-grained consider-
ation, there are L POIs in concerned areas and we need to
know the AQIs of the POIs, where M < L. Due to the lim-
ited number of the available sensors, the AQIs of the POIs
without the sensors need to be estimated.

Since the sensors monitor data asynchronously, we divide
the system into short equal-length time slots, where each data
can be considered as collected in a specific time slot. The
collected data therefore could be very sparse, because only a
small proportion of the sensors collect and upload data at any
certain time slot.

At time t, we construct correlation graph Gt to illustrate
the state of the system. Gt has multiple subgraphs, denoted as
{Gtt′}. Each subgraphGtt′ containsL nodes, where each node
implies the collected value or the estimated value of a specific
POI at time t′. The node is labeled if the corresponding data
is collected by the sensor, otherwise, the node is unlabeled.
The sets of the labeled and unlabeled nodes are given by Lt
and U t respectively. Each labeled node vtn is combined with a
measured value denoted as ctn. For each Gt, we only consider
limited number of subgraphs, given by {Gtt−Th

, · · · , Gtt+Tf
},

where Th is the number of concerned historical subgraphs
from current time t and Tf is the number of concerned fu-
ture subgraphs from current time t. Therefore, the total num-
ber of the nodes in Gt is N = (Th + Tf + 1) × L. The set

of all the nodes is denoted as Vt = {vt1, · · · , vtn · · · , vtN} =
Lt
⋃
U t. We define the real-time fine-grained prediction as

F t = [F t1 , · · · , F tn, . . . , F tN ]T, where F tn denotes the inferred
value for node vtn at time t.

2.3. Feature Relations in Correlation Graph

Any of two nodes are connected by an edge. The weight of
the edge depends on the spatial-temporal relation of the two
nodes, as well as the weather conditions of the corresponding
time slots.

The weighted feature vector: We first define the spatial-
temporal-meteorological feature vector of node vtn as

qtn =
[
qtn,1, · · · , qtn,k, · · · , qtn,K

]T
, (1)

where K is the number of features and qtn,k is the k-th fea-
ture of vtn. The feature vector qtn contains the spatial coordi-
nates, the temporal coordinate of vtn, and the meteorological
conditions, including weather types, wind speeds, wind di-
rections, temperature and humidity at time slot t. Due to the
fact that different elements in qtn may have different impacts
on the relations between two nodes, we introduce a weight
vector β = [β1, · · · , βk, · · · , βK ]

T, where βk ∈ (0, 1),∀k ∈
{1, 2, · · · ,K} and ||β||1 =

∑K
i=1 |βk| =

∑K
i=1 βk = 1. Then

the weighted feature vector f tn=[f tn,1, · · · , f tn,k, · · · , f tn,K ]T

of node vtn is expressed as
f tn = qtn � β =

[
qtn,1β1, · · · , qtn,kβk, · · · , qtn,KβK

]T
, (2)

where � denotes hadamard product.
Similarity of two nodes: We define the adjusted cosine

similarity mt
ij between vti , v

t
j , which is given by

mt
ij =

〈f ti − f ,f tj − f〉√∥∥f ti − f∥∥22√∥∥f tj − f∥∥22 , (3)

where f denotes the mean values of the weighted features.
The weight on each edge: For each node, its k-nearest

neighbors are defined as the nodes that have the top k highest
similarity with this certain node. If node vtj is one of vti ’s k-
nearest neighbors or vti is one of vtj’s k-nearest neighbors, we
define the weight of the edge between vti , v

t
j as

wtij =
1

2
tanh

(
α1(m

t
ij − α2)

)
+

1

2
, (4)

where the parameter α1(α1 > 0) magnifies the differences
of similarities and the parameter α2 ∈ (−1, 1) is a cutoff
value. wtij is in (0, 1) since it is a monotone function and
mt
ij ranges from −1 to 1. If node vti , v

t
j are not one of the k-

nearest neighbors of each other, the weight wtij between them
is set to 0 to reduce the influence by dissimilar nodes and to
improve computing efficiency. It is worth stressing that vti is
not a neighbor of itself and we simply set wtii = 0,∀vti ∈ Vt.

Further, a real symmetric weight matrix W t can then be
given by W t = [W t]

T
=
[
wtij
]
N×N . In addition, the degree

dtn of node vtn is given by dtn =
∑N
i=1 w

t
in =

∑N
i=1 w

t
ni.
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3. PREDICTION PROCEDURES DESIGN
After receiving the monitoring data at time slot t, the predic-
tion system immediately executes a round of iteration in or-
der to obtain the real-time prediction F t, by using the history
prediction F t−1 and the measured data {ctn} for the labeled
nodes. This includes two procedures, namely the preparation
procedure and the estimation procedure, as shown in Fig. 2.
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Fig. 2: An illustration of the prediction procedure, where 1©, 2© and 3© show the prepa-
ration procedure to obtain the pre-estimation vector Yt, and 4© shows the estimation
procedure to obtain the final estimation result Ft.

3.1. Preparation Procedure
Based on Gt−1 and F t−1 for the last time slot t−1, and the
measured values {ctn} at the current time slot t, we first con-
struct a pre-estimation vector for the current time, given by
Yt = [Y t1 , · · · , Y tn, · · · , Y tN ]T. Yt only shows the rough val-
ues of the nodes in Gt and needs to be refined in the subse-
quent estimation procedure.

For the labeled nodes: We set Y tn = ctn for node vtn.
For the unlabeled nodes not in the newly-added sub-

graph: When it comes to the t-th time slot, Gt is generated by
removing the oldest subgraph and adding a new subgraph for
time t+Tf . The unlabeled nodes not in the newly-added sub-
graph have been estimated in the last-time prediction. There-
fore, for the node vtn in these subgraphs, we set Y tn the same
to the last-time estimated value F t−1

n′ (Suppose the n-th node
in Gt is the n′-th node in Gt−1).

For the unlabeled nodes in the newly-added sub-
graph: An LSTM [13] network is used to determine their
pre-estimated values. Specifically, the mean value µτ for
each monitoring time slot τ is calculated first to represent the
coarse-grained estimation, given by

µτ = Fτ , τ = 1, 2, · · · , t−1+Tf , (5)

where Fτ denotes the average of the last-time estimated val-
ues for time slot τ . With the meteorological features and a se-
ries of the coarse-grained estimations as the training dataset,
an LSTM network can be trained in advance and can be im-
mediately used to predict the coarse-grained estimation µt+Tf

in the newly-added subgraph. Finally, we set µt+Tf
as the

pre-estimations for all the nodes in Gtt+Tf
.

To sum up, the pre-estimation is given by

Y tn =


ctn, vtn ∈ Lt,
F t−1
n′ , vtn ∈ U t and vtn 6∈ Gtt+Tf

,

µt+Tf
, vtn ∈ Gtt+Tf

.
(6)

The steps 1©, 2©, and 3© in Fig. 2 illustrate the three kinds of
assignments in (6) respectively.

3.2. Estimation Procedure
Based on the pre-estimated values in Yt, we need to calculate
more precise prediction values in F t.
3.2.1. Minimizing the loss function
Two aspects are concerned when calculating F t. The first
one is smoothness, implying that two closely related nodes
(with a high weight edge between them) need to have simi-
lar values. The second one is reliability, indicating that the
final estimation and the pre-estimation should be as same as
possible, given by F t ≈ Yt.

Combining smoothness and reliability, we design the loss
function with the help of [14], given by:

Lt(F t,β)= 1

2

∑
vti ,v

t
j∈Vt

wtij

(
F ti√
dti
−
F tj√
dtj

)2

+λ
∑
vti∈Vt

(
F ti−Y ti

)2
, (7)

where λ is the balanced parameter. The first term on the right
side in (7) is the smoothness term. Instead of using the dif-
ferences of the function values on the two neighboring nodes
directly, we regularize each function value F ti with the corre-
sponding normalized coefficient 1/

√
dti. The second term on

the right side in (7) is the reliability term.
It is worthy to note that β does not need to be updated fre-

quently, since the weights of different features are supposed
to be stable in a short time. Our objective is to minimize the
average of the loss functions in T , given by

argmin
β,{Ft}

1

|T |
∑
t∈T

Lt(β,F t),

s.t. ||β||1 = 1, βk > 0, ∀βk ∈ {1, · · · ,K},
(8)

where T represents a set of the history monitoring time slots.
Note that the iterative utilization of the estimated unlabeled
nodes for each next round forms a semi-supervised learning
approach.

The minimization problem in (8) can be divided into two
optimization sub-problems. Supposing that β is fixed, the
first sub-problem is given by

Lt1(β) = min
Ft

Lt(F t,β). (9)

Correspondingly, the second sub-problem is given by

argmin
β

1

|T |
∑
t∈T

Lt1(β),

s.t. ||β||1 = 1, βk > 0, ∀βk ∈ {1, · · · ,K}.
(10)

3.2.2. Solution to sub-problem (9)
Lt(F t,β) in (7) is a convex function when β is given. We
differentiate Lt with respect to F t and set it to 0, given by

∂Lt

∂F t
=

[
∂Lt

∂F t1
,
∂Lt

∂F t2
, · · · , ∂L

t

∂F tN

]T
= 0T. (11)
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After derivation, the final solution of F t is 1 given as

F t = λ

1 + λ

(
I − 1

1 + λ
(Dt)

− 1
2W t(Dt)−

1
2

)−1
Yt, (12)

where (Dt)−
1
2 = diag(1/

√
dt1, · · · , 1/

√
dtN ).

It is noteworthy that once β is figured out, we can directly
obtain the real-time fine-grained prediction according to (12).

3.2.3. Solution to sub-problem (10)
The value of β is obtained by the following genetic algorithm
based on long-term weather conditions and the measured air
quality data.

Each individual P(n) in the generation set P represents
a trial solution to (10) and we encode it to a series of binary
digits P(n) = (sn1 , s

n
2 , · · · , snK×R) as its genotype, where R

denotes the encoding length of each element in β and K is
the number of features. Therefore, K × R denotes the total
length of an individual’s genotype. The genetic algorithm is
specified as follows.

Crossover: For any two individuals in the old generation,
crossover can be performed with a fixed probability pc to pro-
duce new individuals. To be specific, for individuals P(i)
and P(j), we randomly choose a position p=2, 3, · · · ,K ×
R and then the genotypes for the new individuals are de-
noted as P(i′)=(si1, · · · , sip−1, sjp, · · · , s

j
K×R) and P(j′) =

(sj1, · · · , s
j
p−1, s

i
p, · · · , siK×R) after crossover.

Mutation: Each binary digit in the old generation after
crossover remains the same in most of time and alters to the
opposite with a fixed probability pm.

Selection: The fitness value for each individual in the old
generation is given by

z
(
P(n)

)
= 1
/( 1

|T |
∑
t∈T

Lt1(β)

)
, ∀P(n) ∈ P. (13)

The new generation is chosen from the individuals after
crossover and mutation according to their survival probabil-
ities where the survival probability for each individual is in
proportion to its fitness value.

Evolution Overview: Crossover and mutation are first
performed to create new individuals in the old generation. To
satisfy the constraint ||β||1 = 1 for the new individuals, we
normalize them and it is easy to prove that the fitness val-
ues won’t change after normalization. The new generation
is then produced by the selection procedure with constraining
the size of the new generation equals to the size of the old one.
The genetic algorithm is terminated when a better individual
hasn’t appeared in the latest E generations.

4. EVALUATION

4.1. Parameter Setup
In asynchronous sensing, the probability of each sensor de-
tecting data at each time slot is simply set to 1/5 to illustrate
the most general case. The other parameters are listed in Ta-
ble 1.

1Since
∣∣∣I − 1

1+λ
(Dt)

− 1
2 W t(Dt)

− 1
2

∣∣∣ 6= 0, the matrix is invertible.

Table 1: Parameter Setup

Number of nodes in one subgraph L 60
Number of sensors in one subgraphM between 5 to 30
Similarity parameters α1 and α2 20 and 0
Number of history subgraphs Th between 3 to 8
Number of future subgraphs Tf between 1 to 7
Encoding length R 20
Parameter k in k-NN 200
Trade-off parameter λ 0.3
Crossover probability pc 0.6
Mutation probability pm 0.05
Termination conditions E 500
Length of each time slot 5 minutes

4.2. Simulation Results and Discussions
In Fig. 3(a), we set M = 30 and compare the performances
when the numbers of the history/future subgraphs change,
where the performances are indicated by average relative pre-
diction errors. The results indicate that the appropriate num-
bers of the history/future subgraphs lead to a better perfor-
mance. For the history subgraphs, Gt may lack history infor-
mation when Th is too small, and Gt will contain worthless
information if Th is too big. For the future subgraphs, Gt may
have insufficient meteorological conditions in the near future
when Tf is too small, and Gt will contain relatively few la-
beled nodes if Tf is too big.
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Fig. 3: The performance of the proposed solution with respect to different settings.

In Fig. 3(b), we compare the performances of different
approaches, including Multi-layer perception (MLP), Inverse
distance weighting interpolation [10], and the proposed CG
Model (with Th=5, Tf =3). A significant performance gain
of our solution can be observed, and the average relative error
can be reduced to 5% when there are enough sensors.

5. CONCLUSION
In this paper, we modeled the asynchronous air quality data
and their spatial-temporal-meteorological relations by using
the weighted CG. A novel real-time fine-grained prediction
method was proposed based on the sparse dataset. Simulation
results show that the size of the CG should not be too big or
too small. The proposed scheme reduces the error to 5% (with
Th=5, Tf =3, M =30) while the error of MLP is about 9%
in asynchronous sensing situation.
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