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ABSTRACT

Continuously-worn wearable sensors produce copious amounts of
rich bio-behavioral time series recordings. Exploring recurring pat-
terns, often known as motifs, in wearable time series offers criti-
cal insights into understanding the nature of human behavior. Chal-
lenges in discovering motifs from wearable recordings include noise
removal, pattern generalization, and accounting for subtle variations
between subsequences in one motif set. In this work, we introduce
a time series processing pipeline to summarize an optimal set of
variable-length motifs in a real-world wearable recording data-set
collected in a hospital workplace setting. We propose the use of
the Savitzky-Golay filter for noise removal without significant data
distortion. We then combine the previously developed HierarchIcal
based Motif Enumeration (HIME) algorithm with a principled op-
timization approach to obtain the most repetitive patterns in long-
term wearable time-series. We also describe challenges in using
just a single method to detect motifs in wearable time series in our
experiments. We demonstrate our pipeline can effectively identify
meaningful variable-length motifs in large-scale heart rate signals
collected continuously from over 100 individuals both at and out-
side their workplace over 10 weeks through two machine learning
experiments.

Index Terms— Human behavior patterns, wearable, motif anal-
ysis, principle optimization, SAX

1. INTRODUCTION

Driven by the recent advances in microelectronics technology, wear-
able sensors today can capture vital physiological and bio-behavioral
about an individual over a prolonged period in real-world settings.
Such rich multimodal time series data offer opportunities for en-
hanced understanding of individual behaviors including social inter-
actions [1], sleep patterns [2] and emotion variations [3]. However,
the underlying patterns of these time series data (such as heart rate,
step counts of physical activity over time) in the wild are often not
known to the researcher, and a visual inspection is time-consuming
and costly, if not manually impossible, and frequently results in a
limited understanding of the data.

Motifs are most repetitive similar patterns that frequently ap-
pear in time series. Motif discovery on wearable recordings can help
identify underlying phenomena and provide useful insight to under-
stand biobehavioral patterns and mechanisms. Since the introduction
of the motif discovery problem, many approaches have been intro-
duced [4, 5, 6, 7]. Conversion of the signal into a symbolic represen-
tation (named SAX) has been extensively exploited in search-based
algorithms. [7] formulate motif discovery as an optimization prob-
lem by learning values of motifs which maximize the frequency of

recurring subsequences. However, existing SAX-based motif dis-
covery approach could return many different motifs with close dis-
tances which may harm the interpretation of the data. Meanwhile,
direct optimization for motif discovery enforces the motif window
size to be the same, while the lengths of similar subsequences in
real-life biobehavioral recordings could vary and are undetermined.

In this paper, we present a novel processing pipeline for dis-
covering the most ’meaningful’ variable-length motifs in large-scale
biobehavioral time series from wearable sensors. Given a minimum
motif length mmin, the pipeline automatically determines a set of
motifs longer than mmin and the Euclidean distance between ev-
ery other motif is greater than a threshold distance. The pipeline
includes filtering, HierarchIcal based Motif Enumeration [6], and a
principled optimization for learning most meaningful motifs. In this
work, we particular define motifs which maximize the number of re-
current subsequences in time series as meaningful, while pairwise
distances between different motifs are above a threshold value. The
main contributions of this work are as follows:

1. We propose a novel combination of SAX-based motif match-
ing algorithm and principle optimization for learning meaningful
motifs in long-term real-world biobehavioral recordings. We regard
the optimization process as a summerization task.

2. We show, on a wearable sensor timeseries data-set of PPG
heart rate data we recently collected from over 100 clinical staff in a
large hospital (both at and outside work) over a 10 week period, that
our pipeline captures useful structures that could be used for human
behavior analysis and modeling.

2. BIOBEHAVIORAL TIMESERIES DATA SET

In early 2018, we conducted a set of comprehensive human-subject
experiments of the ”TILES: Tracking Individual Performance with
Sensors” study to examine the physiological, environmental, and be-
havioral variables affecting job performance and employee wellness.
Throughout a ten week period, we collected data through multi-
modal wearable sensors from over 100 hospital nursing volunteers
working at a large critical care hospital located in Los Angeles, CA.
From this sample of individuals, the sample for the present paper in-
cluded 138 individuals working as full-time nursing professions at
the hospital. The current sample included 81 females (rest males)
and 84 individuals worked the day shift (rest, worked night shift).
In particular, we asked participants to wear the Fitbit Charge 2 at
all times throughout the 10-week data collection period, both at and
outside work. Fitbit Charge 2 [8] is a wristband device that offers
information about physical activities, sleep quality, and heart rate
through photoplethysmography (PPG). In this paper, we primarily
focus on exploring time series motifs from the PPG heart rate (HR).
Table summarizes the recording statistics of HR data in our dataset.
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Table 1. Average/Std of valid HR recording hours in TILES study.
All Nurses Day-shift Night-shift

Average 1162.63 1182.50 1131.30

Standard Deviation 403.48 401.51 404.60

3. NOTATION

In this section, we introduce some notations and definitions used in
this paper.

Definition 3.1. The time series data T of length n is represented
as a set of observations (ti, ti+1, ..., tn) ordered by time, with ti ∈
R. In our paper, ti represents the PPG HR at time point i. For
motif discovery, all time-series are normalized to remove scaling and
offset effects, given the primary interest is to find similar matching
’shape’. Typical normalization procedure used in motif discovery is
z-normalization.

Definition 3.2. Given a time series T of length n, a time series sub-
sequence Sp,q is a contiguous set of samples starting from point p
and ending at q with length m = q− p+ 1, s.t 1 ≤ p ≤ n−m+ 1.

Definition 3.3. A wordw = w1w2...wL is the symbolic representa-
tion of a sub-sequence Sp,q , also notated as R(Sp,q), with wi ∈ Σ,
where Σ is the representation alphabet set with size of a. For ex-
ample, when a = 3, Σ = {a, b, c}. Sub-sequence Sq1,p1 and
Sq2,p2 match if their symbolic representations are the same, namely,
R(Sq1,p1) = R(Sq2,p2)

Definition 3.4. Given a subsequence Sp,q and its symbolic repre-
sentation R(Sp,q), Sp,q is an instance of a word w if R(Sp,q) = w.

Definition 3.5. In this work, we particular define motifs which max-
imize the number of recurrent subsequences in time series as mean-
ingful, while pairwise Euclidean distances between different motifs
are above a threshold value. This definition is similar to [7].

4. METHOD

In this section, we introduce our pipeline in generating a set of mean-
ingful varied-length time series motifs from wearable recordings.
We first aggregate HR readings every three minutes. The second step
uses the Savitzky-Golay filter to smooth the wearable time series
data without substantially distorting the signal. HierarchIcal based
Motif Enumeration (HIME) is then used to extract a motif set in
symbolic representation. Finally, to find the most meaningful motifs
from the previous step, we introduce an optimization problem simi-
lar to [7], to learn a motif sets with size K. Our method is summa-
rized as a sequence of steps: 1) Data aggregation, 2) Savitzky-Golay
filtering, 3) HIME-SAX based algorithm that returns a set of motifs
and 4) Top-k motifs learning. These are further described below.

4.1. Data Aggregation

The PPG heart rate samples are made available by the Fitbit Charge
2 sensors at intervals less than one minute, but the time differences
between two consecutive samples are irregular. Discovering mo-
tifs in time series that are not sampled at fixed rate is meaning-
less, and consequently we aggregate the measured heart rate sam-
ples to create a time series TAgg with a set of heart rate observations

((tAgg)1, ...(tAgg)i, (tAgg)i+1, ..., (tAgg)n), such that time differ-
ence between (tAgg)i and (tAgg)i+1 is constant. Another reason for
the aggregation of heart rate data is that prior literature suggests that
PPG heart rate should be averaged at over 1-minute duration to ob-
tain a reliable measure [9]. A large time difference between (tAgg)i
and (tAgg)i+1 could lead to significant loss of resolution, as a result
we empirically chose the interval as 3 minutes. We want to high-
light that the aggregation step may not necessary for every kind of
wearable time series, such as step count.

4.2. Savitzky-Golay filter for signal enhancement

Wearable sensors can easily pick up noises from the environment or
body movement and thus filtering becomes an essential prerequisite
for further processing of signal. Savitzky-Golay filter [10], often
known as S-G filter, has been successfully used to reduce noises in
signals while simultaneously maintaining the shape and height of
peaks. In our context, we adopted the S-G filter to smooth the aggre-
gated HR since our interest is in identifying time series subsequences
where their ’shapes’ match. The idea of S-G filter is to perform a
least-squares polynomial approximation of a subset of consecutive
data points to a polynomial and then a convolution of all the polyno-
mials is obtained. Namely, given the time series TAgg we obtained
from 4.1, SAgg is a subsequence of length 2m + 1, and S-G filter
tries to fit a polynomial with degree z (pi =

∑z
x=0 axi

x) to the SAgg

centered at i = 0 which minimize the least-squared error below:

ε =

m∑
i=−m

(pi − (tAgg)i)
2 (1)

Prior study [11] has shown that large window sizes and low poly-
nomial degrees may yield distorted signals. To minimize the deform-
ing of the signal, we experimentally choose a small window size of
5, and cubic order polynomials in the S-G filter. These parameters
could be tuned systematically based on criteria and heuristics defined
in [11, 12], but we leave this endeavor for future work.

4.3. HierarchIcal based Motif Enumeration (HIME)

HierarchIcal based Motif Enumeration (HIME) [6] is a greedy algo-
rithm to detect variable length-motifs. Similar to most existing SAX
motif discovery algorithms, HIME first converts a z-normalized sub-
sequence Sp,q with length ofmstart in time series T (obtained from
4.2), to Piecewise Aggregate Approximation (PAA) [13] segments of
sizeL. We empirically selectmstart = 24 in this pipeline, since HR
changes with patterns in range of 30 -90 minutes in many meaning-
ful contexts , like after eating [14], during sleep [15], and exercise.
HIME later transverses the similar sequences in neighbor points and
update length m of subsequences in the algorithm, and we set the
minimum length of the return instance as mmin = 10 (equivalent to
30 minutes). Secondly, each PAA segment is mapped to a symbolic
representation wi ∈ Σ, where the size of alphabet set (Σ) is a. The
region of each alphabet character is approximately equal-probable
under Gaussian distribution [5].

Numerosity Reduction(NR) [16] is usually the procedure fol-
lowed in most existing works to remove similar neighboring subse-
quences off by one time point to avoid unnecessarily long motifs,
but it can miss some patterns due to skipped subsequences. Instead,
HIME applies induction graphs to represent each subsequence off
by one point as nodes, where consecutive subsequences in time se-
ries (Sp,q and Sp+1,q+1) are connected by an edge. The induction
graph stores the next non-similar subsequence of a current subse-
quence by attaching a forward edge in between. HIME performs
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a left to the right passing of all nodes in Induction Graph, and re-
cursively enumerate variable-length subsequences and to detect re-
peated SAX symbolic representation. After visiting one node, HIME
uses a greedy approach to remove short motifs which are fully cov-
ered by longer motifs to maintain a small motif set for decreasing
computational costs. A detailed description of HIME is in [6].

We employ HIME [6] in our pipeline, as author highlighted that
it detects motifs using a single SAX word of length L representing
the subsequence Sp,q of length m where m could vary. It essen-
tially implies that instances with the same SAX representation have
close Eucliedien distances in between by measuring their PAA seg-
ments of size L. It is critical to form the optimization problem in
the next subsection since input matrix should have fixed number of
columns. Besides, as a pre-processing step prior to optimally select
top-K motifs, HIME filters out subsequences which rarely occur in
time series, and returns a instance set of size J where J is much
smaller than length (n) of T . Thus HIME also significantly reduces
computations in the optimization problem we formed as a later step.

4.4. Top-K motifs Learning

In the final step, we are trying to learn the most ’meaningful’ (see
3.5) motifs from instances extracted by HIME, which can be rec-
ognized as a summerization task. We have found that HIME could
return over 500 frequently occurring motifs (formed by single SAX
word) from the HR time series that we collected over 10 weeks for
each participant. One straightforward solution is to choose the K
most frequently occurring subsequences, but we could easily select
two motifs where their symbolic representation are similar. For ex-
ample, we could find two motifs ’EEEDDEEE’ and ’EEDDDEEE’
which occur most frequently in an individual’s HR data, but select-
ing both of them may be erroneous if subtle differences between
these similar motifs may likely be caused by sensor noise. On the
other hand, a simple clustering solution, like K-means, might regard
two HIME-motifs ’EEEDDEEE’ and ’EEECCEEE’ as one cluster,
which assumes they might belong to two different motifs.

[7] proposed to learn Mdo ∈ RK×m that contains K motifs
from Udo ∈ R(n−m+1)×m, where n is the length of time series
T , and the i-th row in Udo represents z-normalized subsequence
Si,i+m−1 (’do’ stands for direct optimization). However, we ar-
gue that the length of possible recurrent patterns in wearable sen-
sor recordings are always unknown, so choosing m is difficult if we
directly deploy the method. HIME identifies a set of subsequences
with varied length, which are ideal input for this optimization task.
In particular, we concatenate PAA segments of each subsequence
with length of L to create U (U ∈ RJ×L). The reason we could
do this is that each subsequence is compared as a single SAX word
representation of length L in HIME. We define the total frequency
given motif matrix M with K motifs, and input matrix U with J
instances as F (M), and we obtain:

F (M) =

K∑
k=1

J∑
j=1

Fk,j (2)

Fk,j =

{
1, if

∑L
l=1(Mk,l − Uj,l)

2 < D

0, otherwise
(3)

D is the distance threshold, and we determine D by calculating
pairwise Euclidean distances in U and choose a small percentile as
D. A candidateM should containK motifs that maximize the func-
tion F (M), while K motifs should be different from each other by
a threshold distance. Intuitively, we choose 2D to be the minimum

distances between each learned motif in M . Finally, optimization
task can be formulated as:

M∗ = argmax
M∈RK×L

F (M) (4)

subject to
L∑

l=1

(Mk,l −Mh,l)
2 > 2D

where k ∈ {1, ...,K}, and h ∈ {k + 1, ...,K}

As [7] suggested, we approximate F (M) using a Gaussian ker-
nel to handle zero derivative of F (M) and discontinuity at the point
where

∑L
l=1(Mk,l − Uj,l)

2 = 0:

F̂ (M) =
1

KJ

K∑
k=1

J∑
j=1

F̂k,j (5)

where: F̂k,j = exp
α
T

∑L
l=1(Mk,l−Uj,l)

2

(6)

The parameter α controls the smoothness of approximation
function, and we keep F̂ (M) in the range of 0 - 1 for optimiza-
tion reasons. Gradient ascent solution for this optimization is then
derived using this approximation. Details of the optimization algo-
rithm can be found in [7].

5. RESULTS

We present here the motif discovery results using our pipeline on
the TILES PPG recordings. As described in 4, we first aggregate
the PPG HR over a period of 3 minutes. We then filter the aggre-
gated time series TAgg using an S-G filter with cubit fitting and a
windows size of 5. T are then processed using HIME, and a set
of subsequences of size J are returned. We chose L = 8 (Length
of SAX word) and instances of minimum length (mmin) as 10 and
starting length (mstart) of 24 in HIME. We automatically determine
the lower bound of a by the proposed method in [6]. We concate-
nated PAA segments of each instance to create U where we keep the
number of PAA segments as L. Finally, we set to learn K (K = 5)
motifs which maximize the frequency function defined in 4.4 from
U . We select α = 2 for the Gaussian approximation in equation
6, and we choose distance threshold at percentile of 1%, 2%, 3%.
We apply the pipeline to extract motifs for each participant. Figure 1
shows 2 motif examples for a participant which repetitively occurred
during sleep. The heart rate motifs shown in 1(a) could potentially
indicate a sleep cycle pattern according to [15], and motifs in 1(b)
offer hints to identify wake-up event. We further conducted two ex-
periments below to validate motifs we extracted.

5.1. Work status prediction

In the first experiment, we propose to use motifs to identify con-
textual information of a participant, particularly working status on a
daily basis. We extracted the frequency of each motif in M between
7am-7pm and 7pm-7am on a daily basis for day-shift and night-shift
nurses, respectively, to predict working status. To compare with mo-
tifs we learned, we picked up the five most frequently occurred SAX-
motif from HIME, and extracted the same frequency feature. We
train the SVM model for each participant and report the averaged
5-fold validation accuracy results for all participants. Table 2 shows
the average 5-fold validation accuracy results of work-status predic-
tion, and we observe that motifs extracted from our pipeline offers
better accuracy than HIME motifs.
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(a) 4 subsequences of a motif that occurred repeatedly during the start of
sleep

(b) 4 subsequences of a motif that occurred repeatedly during the end of sleep

Fig. 1. Plots show two HR motifs which appear repeatedly at differ-
ent sleep periods. We note that there are still slight dissimilarities in
shape between same set of instances, which may be caused by sensor
misplacement, body movement and environment noise, but we ob-
serve that these instances match well with each other qualitatively.

Table 2. Prediction accuracy of work status using motif frequencies
from our pipeline and HIME algorithm

HIME Motif, D Motif, D Motif, D
Motif at pct=1% at pct=2% at pct=3%

Accuracy 65.20% 65.62% 67.20% 68.54%

5.2. Sleep quality prediction

In this experiment, we propose to use motif features to classify sleep
quality. The Pittsburgh Sleep Quality Index (PSQI) was adminis-
tered during enrollment sessions and was used to assess sleep quality
[17]. The total PSQI score average is 7.00 (SD=1.76) for day-shift
nurses and 8.59 (SD=2.87) for night-shift nurses, on a scale ranging
from 0 (best quality) to 21 (worst quality). We further binaries the
score with the threshold of 7 according to [17] for each participant,
where a score above 7 indicates potential sleep disorders.

For motifs we extracted from the pipeline, we pick up the mo-
tif that appears most frequently during the sleep, namely Mi,:. We
then extracted the standard deviation and median from Mi,: (Mi,: ∈
R1×L) and its delta differences. Since length m of subsequences
for the same motif could vary, we further extract the standard de-
viation/median of motif duration occurred during sleep through the
10-week study. Meanwhile, we extract the standard deviation and
median of sleep duration, sleep efficiency and sleep REM duration
from Fitbit sleep summaries to predict sleep quality for comparison.
We discard participants with less than 30 nights of sleep data in this
experiment. Similar to the first experiment, we train the SVM model
and report the 5-fold validation accuracy results in Table 4. We ob-
serve that motif features consistently yield higher prediction accu-
racy than Fitbit summaries, and returned significantly higher valida-
tion accuracy when D is at pct = 2%.

6. DISCUSSION AND FUTURE WORK

Existing methods for motif discovery do not completely address the
challenges faced when processing biobehavioral time series obtained
from wearable sensors in real world condition i.e., the ability to

Table 3. A list of features from which they were derived in Fitbit
sleep summary and most frequently occurred motif during sleep.

Stream Statistics Data

Fitbit Summary Median/Std
Sleep duration
Sleep efficiency
REM Sleep duration

Learned Motif Median/Std
PAA segments
PAA segments delta difference
Motif duration

Table 4. Prediction accuracy of binaries sleep quality score using
motif feature and Fitbit sleep summary

Feature Accuracy F-1

Fitbit Sleep summary 60.86% 61.90%

Motif statistics, D at pct=1% 67.30% 66.35%

Motif statistics, D at pct=2% 75.36% 77.47%

Motif statistics, D at pct=3% 66.67% 67.51%

detect variable-length motif while returning the most ’meaningful’
motifs (See definition 3.5). In our pipeline, we showed that a com-
bination of HIME and principled optimization could help systemat-
ically discover useful variable-length motifs in long terms wearable
sensor recordings, such as HR considered in our experiments. We
demonstrate foremost that motif features returned from our pipeline
yield higher accuracy in predicting contextual conditions like work
status than HIME-motifs, and also outperforms Fitbit sleep summary
in classifying sleep quality.

We found that there are only few published work focused on
detecting motifs in timeseries obtained from commercial wearable
sensors [18, 19]. To the best of our knowledge, our work to apply
motif discovery on long-term biobehavioral time series from wear-
ables is among the early efforts. Despite potential accuracy issues in
heart rate measurement from Fitbit Charge 2 [20], it minimally in-
terferes with our analysis since our scope is to study the variations in
the signal where the DC component is removed by z-normalization.

There are several compelling research directions for expanding
on this work which we aim to explore in the future. We plan to learn
time series motifs using unsupervised learning approaches such as
with auto-encoders. Besides, we will also examine the dictionary
learning method in exploring motifs in our data-set. We intend to
make a comparison on results generated from these approaches and
summarize a more generalized solution especially from the view-
point of the utility of the discovered motifs in predictive modeling
such as mental state and work performance [21].
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