
CONVOLUTIONAL NEURAL NETWORK ON EMBEDDED PLATFORM FOR PEOPLE
PRESENCE DETECTION IN LOW RESOLUTION THERMAL IMAGES

Gianmarco Cerutti, Rahul Prasad, Elisabetta Farella

ICT-irst, Fondazione Bruno Kessler, Trento, Italy

ABSTRACT
Detection of human presence is a key feature in Human

Computer Interaction. Solutions based on cameras are attract-
ive, but require computer vision techniques to extract mean-
ingful data, which can be expensive from a computational
point of view. In this work, we present a new system that
merges a low resolution thermal camera with advanced fea-
ture extraction techniques such as Convolutional Neural Net-
works. We demonstrate the possibility to adapt their execu-
tion to resource-constrained platform without significant loss
of performance, by processing data on a 32-bit low power mi-
crocontroller, performing the classification on thermal video
stream. It achieve 76.7% of accuracy in the microcontroller,
requiring only 16.5 mW in continuous classification mode
and using 6 kB of RAM.

Index Terms— CMSIS-NN, embedded systems, Con-
volutional Neural Network, low-resolution thermal camera,
thermopile array

1. INTRODUCTION

People detection is a key step for many tasks like people
counting [1], surveillance [2], generation of events for human
computer interaction (e.g. automatic light switching [3]) and
people tracking [4]. These tasks are useful in smart city scen-
arios, where human presence detection can be very useful in
public spaces, which are in many cases outdoor and ample.
However, this kind of scenario is more challenging than de-
tection in indoor environments for many reasons, such as the
high variability of several parameters, i.e. sudden changes
of temperature and light due to weather conditions, or high
variability of human and background temperature and wide
daytime temperature variation. Therefore, more advanced
data processing approaches are required to guarantee mean-
ingful information extraction. At the same time, the typically
broader size of outdoor spaces requires distributed sensing
and intelligence. Always-on IoT end devices perform data
analytic right at the source, reducing latency as well as energy
consumption for data communication [5] [6].

Hence, this work targets low-cost, low-power and re-
source constrained IoT end devices, with the aim of detecting
presence in outdoor scenarios while preserving privacy. In
particular, we focus on outdoor people detection by means of

low-resolution thermal cameras, using an innovative sensor
technology, i.e. a thermopile arrays. Specifically, we used
the Grid-EYE device, able to sense an 8x8 thermal image
every 10 Hz. Furthermore, we implemented a Convolutional
Neural Network (CNN) in an ARM-cortex-M4 core based
microcontroller, using the output of the sensor. To the best
of our knowledge, there is no classifier based on thermopile
array output using CNN.

To the purpose, we first trained the system using a cus-
tom dataset composed by short thermal videos. Then, we ex-
ploited the CMSIS-NN library for neural network developed
by ARM in 2018 . Due to its recent release, there are still
few works using this framework, which can achieve 4.6X im-
provement in runtime/throughput and 4.9X improvement in
energy efficiency [7] with respect to a basic C implementa-
tion. This is enabled by the optimized DSP instructions, such
as SIMD and MAC, integrated in M4 and M7 cores to per-
form workloads of the neural network. Some of these instruc-
tions have been used to accelerate low-precision computation
in neural networks [8].

In this paper, we show the differences in classification ac-
curacy between a 32 bit floating point representation and the
8 bit fixed point format of the weights, required by CMSIS-
NN library. Moreover, we describe the procedure to port the
trained classifier from a Tensorflow implementation in a mi-
crocontroller (CMSIS-NN).

To demonstrate the concept, we built a prototype com-
posed by an evaluation board and a thermopile-array based
sensor. On device measurement shows that it is possible to
run a 3-layer convolutional neural network (4,8, and 16 fil-
ters respectively) on a microcontroller. The overall execu-
tion takes 4.1 ms to classify one image, thus enabling a real-
time classification using 10 Hz (100 ms) thermal videos com-
ing from the sensor. With the use of ultra low-power modes
available for the chosen microcontroller, we achieve a power
consumption of 16.5 mW, including the sensor.

The organization of the paper is as follows. Firstly, we
analyze common approaches for people detection and advant-
ages of adopting thermopile arrays. Then, we describe how
we built both network and automatic tools to export the model
in a microcontroller. Finally, we propose the embedded im-
plementation and we discuss power consumption, computa-
tion time, memory footprint and classification performance.

7610978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

2. RELATED WORK

People detection systems usually include camera based solu-
tions, but the output of this kind of sensors is strongly
illumination-dependent and requires a high computational
load [9]. Furthermore, vision systems often limit privacy.

Detection of people using infrared radiation is a broad re-
search area. In this field, Passive InfraRed sensors (PIR) are
often chosen as solution for fire alarm and intruder detection
since the eighties [10]. However, there are many disadvant-
ages related to the physics of the measured process, which is
in many cases affected by noise. Some examples are back-
ground radiation, reflection and change in ambient temperat-
ure [11]. The main problem of PIR sensors is the inability
to distinguish the human body from a generic source of heat,
such as wind, change of light, etc. An alternative solution
for detecting people in outdoor environment is using thermal
cameras, which provides digital images instead of analog sig-
nal as PIR sensors. From these images, it is easier to differen-
tiate humans from other sources of heat. On the other hand,
their power consumption and cost are much higher than PIR
sensors.

To detect human presence, in this work we use a thermo-
pile array, which senses the temperature in its field of view
and output low-resolution thermal images, i.e. 8 by 8 or 4 by
4. [12]

In a previous work, we made experiments using the Grid-
EYE sensor for people detection [13]. We implemented 4
classic computer vision techniques and we analyzed the dif-
ferences between them in terms of performance and compu-
tation load. However, the work was focused more on the nov-
elty of the sensor and the image analysis was aimed at demon-
strating the feasibility of the detection.

In the present work, we use the same innovative sensor,
but we apply more advanced processing such as CNN.
Moreover, differently from the previous work, we imple-
ment the processing on a microcontroller and characterize the
system in terms of memory footprint, power consumption,
etc.

A similar work is the one of Gomez et Al. [14], where the
authors target edge computing implementing people counting
using thermal images. They implemented a CNN on a mi-
crocontroller, analyzing the power consumption in a battery-
powered prototype. In their case, the environment is indoor,
therefore less affected by thermal noise caused by weather
changing. They reach a power consumption of 34.4 mW,
which is close to our results. However, the execution time
is ~63 s, with a consequent gap between two collected images
sufficient to miss detection of people crossing and standing
for shorter periods. In our case, the execution time of ~5 ms
guaranteeing an higher temporal resolution.

3. PROPOSED APPROACH

3.1. Dataset

To train the system we exploited the dataset collected in
[13] extended with novel samples collected at different back-
ground temperatures. The setup is the same as before: the
Grid-EYE camera was placed at 2.85 m of height, inclined of
60 degree to cover an area of 2 m x 1.4 m. Labelling is done
by means of temporization of crossing during acquisition,
tagging the starting and ending instant.

We have collected 5 more acquisitions with respect to the
previous one, for a total of 75 independent acquisitions (~21k
frames). Moreover, we included more various temperatures.

3.2. Input Data And Preprocessing

The sensor used in this work is the Grid-EYE sensor, with the
following features: 64 pixel output (8x8), 60 degree field of
view, 10 Hz frame rate and ~15 mW of power consumption.
Keeping the image resolution small has two main advantages:
it preserves the privacy of the detected person, and the pro-
cessing required is reasonably light and enable its deployment
in embedded platform [15].

We applied background subtraction before feeding the im-
age to the neural network. This is because of the too wide
range of possible temperature and to highlight the differences
between the background and not only the absolute temperat-
ure value. In fact, a static sunspot can create an indistinguish-
able pattern from a low resolution image.

We implemented a running background average: the main
advantage of this method is the adaptive maintenance of the
background model while changes occur in the scene [16].
When the sensor is powered on, the background is initialized
with the first frame. Afterwards, the algorithm updates each
pixel of the background using an exponential filter:

BGi,j [n] = (1− α)BGi,j [n− 1] + αIi,j [n] (1)

BG[n] is the background image at the step n, i and j are
the indexes of the image. The idea is to slowly adapt the back-
ground model based on the new frames.

Finally the input image is computed as following:

INPUTi,j [n] =| BGi,j [n]− Ii,j [n] | (2)

The drawback of this method is object vanishing. The
exponential filter incorporates any foreground element in the
background after a certain time. This duration depends on the
learning rate α. Mathematically, the step response of expo-
nential filter reaches around 2/3 after the time constant τ . The
relationship between the learning rate and the time constant,
given the sampling period ∆T , is:

α = e−∆T/τ −→ τ = − ∆T

log(α)
(3)

7611

Fig. 1. Flowing diagram depicts the raw image taken from
sensor, then performing a running average background and
then passed to a CNN

For division implementation in microcontroller, alpha is
a power of two (2−7 ≈ 0, 008). According to equation 3,
it achieve around 10 s of time constant, that is a reasonable
duration for people detection in outdoor. This parameter can
be tuned according to the specific application requirements.

3.3. Network Description

The problem described in this work is presence detection.
Formally, it is a binary classification between the two classes
”person” and ”no person” in the field of view.

Table 1 describes the network layers. The other common
parameters between layers are kernel size 3 and stride 1. No
max-pooling and no padding is applied: the number of pixel
is already low (8x8) and decreasing it by pooling would harm
the classification. We used no padding, adding extra pixels
will change the image significantly. The activation function of
each convolutional layer is the Rectified Linear Unit (ReLu).
Finally, the last dense layer uses sigmoid as activation func-
tion, because a binary classification is required. The sigmoid
represents a probability, thus we split the possible outputs in
two classes with a threshold of 0.5.

Table 1. Layer descriptions and bytes needed in an 8 bit
format for weights and intermediate outputs

Layer Type Filter Shape Filter Size Out Shape Out Size
#0 Input - - 8x8x1 64B
#1 Conv. 3x3x1x4 36B 6x6x4 144B
#2 Conv. 3x3x4x8 288B 4x4x8 128B
#3 Conv. 3x3x8x16 1152B 2x2x16 64B
#4 F. C. 16x2x2 64B 1 1B

3.4. Training Procedure

We used the Python programming language and the frame-
work Tensorflow. The input feature of the network are taken
after background subtraction (see section 3.2). Then, we split
the Dataset in training, validation and test in 60%-20%-20%.
Cross entropy is the cost function and we used the Adam Op-
timizer to minimize the it, with a starting learning rate of
0.001. We stop the training after 1000 epochs and in each
epoch the best model on validation set is saved. Then we
used the test set to evaluate the final performance. Table 3
summarize results in the test set using Tensorflow.

3.5. Embedded Programming

To compute the output of the neural network on a micro-
controller, we used the CMSIS-NN libraries. This frame-
work achieves performance optimization of neural networks
on resource-constrained microcontroller based platforms [7].
The calculation uses low-precision fixed point representation
(e.g. 8 or 16 bit), to optimize the memory footprint and avoid
the floating point computation. Moreover, the functions take
advantage of the SIMD instructions to exploit parallel com-
puting, always present in convolutional operations.

Many compatibility issue should be managed in the con-
version from the computer to the embedded programming.
Each weight is quantized to 8-bit fixed point format. To de-
cide how many digits should be used for the integer part, we
check the value of all the weights. The values are between -1
to 1, so we use all the bits to describe the digits, and 1 for the
sign. In this way, the range of possible number is [−1, 1−2−7]
with a resolution of 2−7. The intermediate values (the output
of each convolutional layer) is hard to predict as it varies with
different input. One possible solution is to try the whole space
of input, and determine the range of bits to represent decimal
value for each intermediate value and preprocessing output.

This approach is not optimal for our system, because
background subtraction output hardly reach the ideal max-
imum value (an item of 80° appears in a background model
of 0°). Thus, we decided to use the training set to estimate the
range of the value in practice. We evaluated how many num-
bers goes above a certain power of two. If the percentage of
this numbers is negligible (1%), we use the respective num-
ber of digits for the integer, clipping the value above. This is
a middle ground between loosing resolution (decimals) and
clipping the unlikely integer.

Finally a program export all these information. Firstly, the
weights are quantized according to this formula

Wq = round(W ∗ 2n) (4)

where Wq is the quantized weight, W is the floating point
weight in Tensorflow and n is the number of digits used to
describe the decimal part. If the output number is bigger than
27 or smaller than −(27 − 1), it is clipped to these values.

A program saves the weights in a header file, in a flattened
way ([out channel, filter size, filter size,in channel]) accord-
ing to the one expected from the CMSIS functions. The script
automatically saves the number of integer digits for interme-
diates output in a header files, together with others hyperpara-
meters like number of filters, output-image dimensions, pad-
ding and kernel size.

3.6. Hardware Platform

In order to evaluate the power consumption and the real-time
performance of classification, we choose a generic low power
hardware.

7612

The board is the STM NUCLEO-L476RG. The main
feature of its microcontroller is a Cortex-M4 core, up to
80 MHz clock and the possibility to reach very low consump-
tion (down to 8 µA) in stop modes. The sensor outputs data
every 100 ms. The forward propagation in the neural net-
work takes less than 5% of this time in maximum frequency
mode. As a result, the microcontroller has an idle period and
it lets the system go in low power mode to reduce the overall
power consumption. To wake up the system every 100 ms,
the microcontroller has an integrated low power timer that
enable periodic interrupt also during the sleeping mode, with
a low-frequency clock of 32 kHz. Then when the system is
woken up, the clock is set to 80 MHz and acquisition restarts.

4. RESULTS

In this section, we describe the hardware performance in
terms of execution time, power consumption and memory
footprint. Then, a different firmware enables the simulation
of test images on the microcontroller and let us calculate
the loss in classification performance due to the quantization
process.

Table 2. Overall Results
Power Consumption [mW] 16.5
Power Consumption µc [mW] 2.3
Execution Time [ms] 4.01
Text [B] 19688
BSS [B] 2712
Data [B] 2680

Power Consumption: As explained in section 3.6, the al-
gorithm goes in low power when it processes the image and
it wakes up when the image from the sensor is ready. So the
current absorbed is considerable during acquisition and pro-
cessing, but it is negligible during stop mode. The device
used for current measuring is the Real-Time Current Mon-
itor EE203. STM board let the costumers to measure the
consumption of microcontroller, without considering the cur-
rent flowing in regulators, debugger and other devices on the
board. Anyhow, the sensor is part of the system itself, so we
have measured current absorbed from the voltage supply, with
and without the sensor connected.

Computation Time: Part of the time is needed to load
the image from the sensor via I2C bus, then it computes
the background subtraction and lastly it performs the clas-
sification. Therefore, computation time is the time elapsed
between starting reading and classification output. Total time
is 4.01 ms; figure 4 shows the different parts in the active
phase. Reading the data takes most of the time, background
subtraction is negligible and classification takes around 2 ms.

Memory Footprint The compiler returns Text, BSS and
Data values for the implemented firmware. Biggest size is
text, that fits into ~20 kB Flash. The other two values in table

Fig. 2. Current consumption during the active phase.

2, BSS and Data, are respectively initialized and uninitialized
variables. The sum of the two shows a total of ~6 kB in the
RAM.

Classification Performance To evaluate the differences,
we computed the accuracy of the test Dataset with Tensoflow
on the PC. Then we send the Dataset via UART to the board,
already preprocessed on the computer. This is to focus on the
loss due to the classification, by not considering the contri-
bution of preprocessing. We sent all the three sets (training,
validation and test) to have a more generic description of the
losses.

Table 3. Loss in classification between 32 bit floating point
and 8 bit fixed point representation

Accuracy Tensorflow [%] CMSIS-NN [%] Loss[%]
Train 81.1 80.9 0.2
Validation 77.4 76.4 1.0
Test 76.9 76.7 0.2

5. CONCLUSIONS

In this work, we implemented a Convolutional Neural Net-
work on a microcontroller for people detection by means of
low resolution thermal images. We demonstrated that is pos-
sible to achieve the full processing of the image within 4 ms
and consuming only 2.3 mW without considering the sensor.
Then we demonstrated that low precision format (8 bit fixed-
point) does not affect significantly the performance, and it
makes the system lose at maximum 1% of accuracy. Finally,
it lets the network fits in just ~20 kB of Flash and ~6 kB of
RAM.

6. ACKNOWLEDGMENT

This work was partially funded by project PAT L.P. 6/1999
Make it PAYT! coordinated by Gruppo Sartori Ambiente -
Altares, protocol number 837.

7613

References
[1] Ya-Li Hou and Grantham KH Pang, “People counting

and human detection in a challenging situation,” IEEE
Transactions on Systems, Man, and Cybernetics Part A:
Systems and Humans, vol. 41, pp. 24–33, 2011.

[2] Alex Leykin and Riad Hammoud, “Robust multi-
pedestrian tracking in thermal-visible surveillance
videos,” in Computer Vision and Pattern Recognition
Workshop, 2006. CVPRW’06. Conference on. IEEE,
2006, pp. 136–136.

[3] Gierad Laput, Yang Zhang, and Chris Harrison, “Syn-
thetic sensors: Towards general-purpose sensing,” in
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. ACM, 2017, pp. 3986–
3999.

[4] Piero Zappi, Elisabetta Farella, and Luca Benini,
“Tracking motion direction and distance with pyroelec-
tric ir sensors,” IEEE Sensors Journal, vol. 10, no. 9,
pp. 1486–1494, 2010.

[5] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and
Lanyu Xu, “Edge computing: Vision and challenges,”
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–
646, 2016.

[6] Manuele Rusci, Davide Rossi, Michela Lecca, Massimo
Gottardi, Elisabetta Farella, and Luca Benini, “An
event-driven ultra-low-power smart visual sensor,”
IEEE Sensors Journal, vol. 16, no. 13, pp. 5344–5353,
2016.

[7] Liangzhen Lai, Naveen Suda, and Vikas Chandra,
“Cmsis-nn: Efficient neural network kernels for arm
cortex-m cpus,” arXiv preprint arXiv:1801.06601,
2018.

[8] Chao Li, Yi Yang, Min Feng, Srimat Chakradhar, and
Huiyang Zhou, “Optimizing memory efficiency for deep
convolutional neural networks on gpus,” in High Per-
formance Computing, Networking, Storage and Ana-
lysis, SC16: International Conference for. IEEE, 2016,
pp. 633–644.

[9] Chakravartula Raghavachari, V Aparna, S Chithira, and
Vidhya Balasubramanian, “A comparative study of vis-
ion based human detection techniques in people count-
ing applications,” Procedia Computer Science, vol. 58,
pp. 461–469, 2015.

[10] RW Whatmore, “Pyroelectric devices and materials,”
Reports on progress in physics, vol. 49, no. 12, pp. 1335,
1986.

[11] Jurgen Kemper and Holger Linde, “Challenges of pass-
ive infrared indoor localization,” in Positioning, Naviga-
tion and Communication, 2008. WPNC 2008. 5th Work-
shop on. IEEE, 2008, pp. 63–70.

[12] Masafumi Kimata, “Trends in small-format infrared ar-
ray sensors,” in SENSORS, 2013 IEEE. IEEE, 2013, pp.
1–4.

[13] Gianmarco Cerutti, Bojan Milosevic, and Elisabetta
Farella, “Outdoor people detection in low resolution
thermal images,” in 2018 3rd International Confer-
ence on Smart and Sustainable Technologies (SpliTech).
IEEE, 2018, pp. 1–6.

[14] Andres Gomez, Francesco Conti, and Luca Benini,
“Thermal image-based cnn’s for ultra-low power people
recognition,” in Proceedings of the 15th ACM Interna-
tional Conference on Computing Frontiers. ACM, 2018,
pp. 326–331.

[15] “Grid-eye state of the art thermal imaging solution,”
Tech. Rep., 03 2016.

[16] Andrews Sobral and Antoine Vacavant, “A comprehens-
ive review of background subtraction algorithms evalu-
ated with synthetic and real videos,” Computer Vision
and Image Understanding, vol. 122, pp. 4–21, 2014.

7614

		2019-03-18T11:11:11-0500
	Preflight Ticket Signature

