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ABSTRACT

Online handwriting recognition enables a convenient user interface
for smart devices. However, readability of the handwriting varies
based on the device user and the writing surface. State of art hand-
writing recognition systems are not yet robust with respect to dif-
ferent variability in writing text which results from user movement,
writing speed, available space to write on, sloppiness efc. In this
work we employ hybrid deep neural network architectures based
on Bidirectional Long Short Term Memory (BLSTM) and Connec-
tionist Temporal Classification (CTC) networks to recognize user in-
dependent dynamic handwriting with variability. Evaluated on IA-
MOnDB database, we show that our proposed model achieves state
of the art accuracy with minimal data preprocessing and recognizes
text with variability. We further compress the model using knowl-
edge distillation to deploy on resource constrained smart devices.
Our novel strategy of training student model for CTC networks en-
joys significant model size reduction with moderate performance
degradation.

Index Terms— Handwriting recognition, LSTM, CTC, over-
lapped handwriting, Knowledge Distillation

1. INTRODUCTION

Online handwriting recognition systems have gained significant im-
portance due to the increasing adoption of smart devices such as
white boards and mobile phones. However, handwritten text on most
of these smart devices is not always legible and has strong variability.
This variability in the written text is introduced by factors such as the
speed of writing, user movement, available of writing space, sloppi-
ness and results in overlapping characters, variable spacing efc. The
performance of several commercially available handwriting systems
is limited due to such inherent variability in the written text [1], [2].

Learning and inferring using deep neural network (DNN) mod-
els on smart devices is constrained by available memory and com-
putational resources. For example, the SpotGarbage app [3] uses
convolutional neural networks to detect garbage in images but con-
sumes 83 percent of CPU and takes more than five seconds to re-
spond. Therefore, approaches to compress DNN models for infer-
ence on smart devices have been gaining significant attention [4],
[S].

In this paper we describe a hybrid DNN based handwriting
recognition system that can reliably infer handwritten text on a
smart device. The hybrid model employs a bi-directional LSTM [6]
and connectionist temporal classifier (CTC)[7]. The design space
consisting of input features and hyper-parameters and approaches to
reduce model size are investigated to enable handwriting recognition
with inherent variability on smart devices.

978-1-5386-4658-8/18/$31.00 ©2019 IEEE

7605

viswanath.ganapathy@lge.com

an abligation to consult the Federal

- * %“’""A
Do ddigesiw b W= Ao

EY £ 00 o 10 ) w0

(a) GT: ’an obligation to consult the Federal’

s a panful  blew v khe Wes

(b) GT: ’is a painful blow to the West’

though fighting a grumbling rearguard

Sl g g e

(c) GT: ’though fighting a grumbling rearguard’

Fig. 1: Samples from [AM-OnDB Database

The main contributions of this work are: 1) development of a
writer-independent handwriting recognition system which achieves
state-of-the-art recognition accuracy (as measured in terms of char-
acter error rate) while requiring minimal preprocessing of input data
2) detection of illegible handwritten text with overlapped characters
3) development of a novel knowledge distillation training method for
CTC networks to train low complexity student models for inference
on resource constrained smart devices.

Our paper is structured as follows. In Sec. 2 the architecture of
the hybrid DNN for handwritten text recognition is explained. Our
novel knowledge distillation strategy for training CTC networks is
detailed in Sec. 3. The database employed, model training setup as
well as performance analysis are detailed in Sec. 4. Sec. 5 concludes
this work and suggests possible directions for future extentions.

2. SYSTEM ARCHITECTURE

Online handwritten data on smart devices are usually captured and
stored in the form of strokes. Each stroke consists of a sequence of
pen-point positions. Based on the pen-point positions, various fea-
tures [8] like stroke coordinates, time stamps, writing angle and cur-
vature can be extracted and used as input to the handwriting recogni-
tion system. The desired output of such a system is the detected text
representing the handwritten pen-point sequence. A few examples
from IAM-OnDB database is shown in Fig. 1.

Outlined below is our hybrid handwriting recognition frame-
work. We will start by reviewing the two major building blocks,
namely LSTM and CTC networks.
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2.1. Reccurrent Neural Network

Recurrent neural networks are a special kind of neural network
which have drawn a lot of attention due to their capability to store
and make use of previously stored information compared to other
forms of NNs.

In the literature, RNNs have found a lot of applications in se-
quence modeling, e.g. speech recognition [9], natural language pro-
cessing [10], etc. Though it is well known that RNNs suffer from
the vanishing gradient problem [11], LSTMs were proposed in [6]
to solve the problem. By including a 'memory cell’, information
can be maintained in the cell for long period of time. A set of 3
gates are introduced to control information entry into the memory
cell, cell output, and duration of memory. Subsequently, peephole-
LSTM was proposed in [12] to learn precise timing of spike signals
by letting LSTM cell control the gates. GRU [13] was proposed as an
alternative to LSTM. Fewer gates are involved in GRU and, as a re-
sult, it is computationally more efficient than LSTM. Recently, [14]
put forward a Minimal RNN with greater interpretability and train-
ability. We will explore how these different RNN structures perform
on the task of online handwriting recognition.

Input Gate

Fig. 2: LSTM memory block with one cell, containing input gate,
forget gate and output gate. '

Considering the fact that in online handwriting data, one char-
acter is connected with another, it is natural to extend LSTM to a
bi-directional form following [15], so that when recognizing the cur-
rent character, its next and previous characters play equally impor-
tant roles. The objective function of the LSTM training algorithm
involves a label corresponding to each point of the training sequence.
This requires segmented data associated with each character. There-
fore, to detect the most likely character sequence from unsegmented
data a modified output layer has to be employed.

2.2. Connectionist Temporal Classification

Our recognition task aims at transcribing a sequence of (w,h) coor-
dinates into characters or words which further forms sentences. It is
commonly known that LSTMs are suitable for such sequence learn-
ing tasks, though a typical LSTM training objective function requires
pre-segmentation of the input sequence since a true label is needed
for each point of training sequence.

However for unconstrained cursive handwriting, segmentation
is not a trivial task. HMMs have been frequently employed where
segmentation and recognition are done at the same time. But HMM
models have their own drawbacks, [7].

Considering the success that discriminative models have achieved
in image classification, in this work, we adopt the CTC framework

Uhttp://blog.otoro.net/2015/05/14/long-short-term-memory/

which is completely discriminative and eliminates the need for
pre-segmented data.

Assuming that the handwriting sequence contains at most K
unique labels, an additional blank label indicating that no label is
emitted to the current input is added and indexed as 0. Given any
input handwriting sequence X = (z1,...,zr), the target sequence
is denoted as z = (z1,...,2v). The length U of the target se-
quence z is generally less than or equal to length K of the input
sequence X. By optimizing the LSTM model parameters, CTC
aims at maximizing the log-likelihood of the target sequence z given
input X.

The LSTM output activations are normalized by a softmax layer
which has K +1 nodes, accounting for K true labels and the added 1
blank label. At each time step ¢, the output vector y; consists of ele-
ments y5’s where each of them ¥ is the probability of observing la-
bel k. Recall that labels z are not aligned to the input, evaluating the
likelihood of z given the LSTM output is difficult. In order to make
connections between the LSTM outputs and the label sequences, [7]
the CTC path is introduced and serves as a kind of medium. A CTC
path is a sequence of predicted labels p, in our case, at the character
level. Unlike the target label z, occurrences of repeating characters
and blank labels are allowed. Therefore, the total probability of a
specific path can be evaluated as the product of the probabilities of
individual labels:

T
Pr(p|X) =y 0]
t=1

Note that the mapping between target sequence z and the CTC
path is “one to many”, since CTC paths may correspond to the same
target sequence. For example, paths a,a,_,b,_, ,c and a,b, _, c,c
will be mapped to the same sequence a, b, c after first merging the
repeated labels and then removing the blank labels. If we denote all
the CTC paths for z as a set B, then the probabilities of all these
paths will sum up to the likelihood of z.

Pr(z|lz) = ) Pr(p|X) @)

pEB

In this way, the model automatically learns the alignment between
the input sequence and the predicted labels without any input pre-
segmentation or output post-processing.

2.3. Hybrid Network

As illustrated in Fig 3, our model fed handwriting pen-point se-
quences into a couple of bidirectional LSTM layers after which the
CTC layer was employed for transcription. Note that the input hand-
writing sequence is subject to a preprocessing and feature extraction
stage. We only applied size scaling for preprocessing. In terms of
feature extraction, following [8] in the literature, we tried computing
different kind of features. Our finding was that using features (w, h)-
co-ordinates and time stamp sufficed to achieve high-level recogni-
tion accuracy and other features like writing direction and curvature
did not add positive value to the recognition performance.

We explored different model structure and hyper-parameter set-
tings. Our best performing model consisted of two BLSTM layers,
with 96 and 192 hidden nodes respectively. As for the CTC decod-
ing algorithm, beam search with beam size greater than 1 lead to very
limited performance boost while heavily sacrificing training speed.
As such, we employed a fixed beam size of 1 (greedy search) in our
experiments.
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Fig. 3: Model Structure

3. MODEL COMPRESSION

Despite the huge success of DNN models on applications such as im-
age classification, object detection, machine translation and speech
recognition, their capacity is known to rely upon a huge number of
parameters which make model deployment impractical on smart de-
vices with restricted computational resources and memory storage.

To alleviate the above problem, a plethora of works have been
put forward to compress the deep models which include low rank
approximation [4], sparsity [16], quantization [5] and knowledge
distillation [17], [18]. In this work, we explored the potential of
knowledge distillation.

Knowledge distillation is a method for compressing deep mod-
els. The core idea is to have a student model mimic the behavior
of a teacher model. The teacher model is trained with the origi-
nal true labels while the student model is typically trained with the
teacher model’s predicted labels. For CNN-like networks, it has been
proven that softening the teacher model’s output can reveal the so-
called dark knowledge which facilitates the training of a good stu-
dent model [17]. Unlike CNN networks, CTC networks directly out-
put a decoded sequence of hard labels and, as such, there is no way
of softening the CTC output. Therefore, knowledge distillation for
CTC networks remains an open problem [19]. One possible solution
that was attempted in [18] was to force the student model’s output to
be close to both teacher model’s CTC output and the true labels.

In the field of machine learning, it is commonly known that en-
semble methods can be used for improving prediction performance,
[20]. The idea of ensemble methodology is to build a predictive
model by integrating multiple models. It has been proven that prop-
erly integrating multiple models’ outputs outperforms selecting the
single best model [21].

Inspired by the idea of ensemble methodology, here we pro-
pose to train a student model by learning from ensemble i.e. multi-
ple teacher models simultaneously. Output predictions from several
teacher models are acquired first and then randomly assigned as true
labels while training the student model. In this way, we circumvent
the hard label softening issue and introduce uncertainty into the true
label in the mean time.

Training Strategy CER(%)
[23] 4.3
[22] 9.26
LSTM with 2 input features w, h 5.66
GRU with 2 input features w, h 5.87
peephole-LSTM with 2 input features w, h 5.69
Minimal-RNN with 2 input features w, h 6.50
peephole-LSTM with 3 input features w, h, t 5.82
LSTM with 3 input features w, h, ¢ 5.82

Table 1: Model Comparison

4. EXPERIMENTS

4.1. Data Description

All experiments have been conducted on the TAM-OnDB [1], a large
online handwriting database. 221 writers contributed their handwrit-
ing samples to generate a total of 13049 isolated and labeled text
lines, containing 11,050 distinct words, acquired from a E-Beam
System.

Two benchmark tasks have been defined for the IAM-OnDB,
among which we selected the IAM-OnDB-t2 benchmark task for
all the experiments to compare with the state-of-art approaches. In
this task the database is divided into four predefined disjoint sets:
one training set containing 5,364 lines; two validation sets contain-
ing 1,438 and 1,518 lines respectively which can be used for hyper-
parameter tuning; and one test set containing 3,859 lines. We con-
sider a writer-independent recognition task here since no same writer
appears in more than one set.

4.2. Setup

RMSProp optimizer was adopted to train the hybrid network, using
a fixed learning rate of 0.001 and mini-batches of 32 samples.

We measured the Character Error Rate (CER%) which is calcu-
lated as the quotient of the number of changes needed to transform
the model predicted output into the ground truth text and the total
number of characters in the ground truth label:

CER — insertions + substitutions + deletions 3)
# of total characters

4.3. Results
4.3.1. Model Performance

Since we use the same experimental setting as [22] and [23], we
cite the results from the original works. Both [23] and our scheme
outperforms [22] with a large margin, Table. 1. Even though [23]
achieved the best testing recognition accuracy, it is important to note
that [23] uses a different but much larger training dataset and requires
extensive preprocessing, whereas our approach does not require any
kind of preprocessing except for data scaling. Here we also explore
how different RNN structures affect the recognition result and we
find that with the same hyper-parameter setting, LSTM, GRU and
peephole-LSTM achieve comparable accuracy.

Fig. 4 depicts several testing samples from IAM-OnDB database
along with the ground truth labels (GT) and our model predictions.
It is worth noting that some of the faulty predictions should actu-
ally be right, such as’cCarole’ in Fig. 4(b) since the character c is
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Fig. 4: Sample predictions on our own generated overlapped hand-
writing. Error predictions are marked in red.
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(a) GT: ’pineapple’
Pred: ’pineapple’
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(b) GT: ’Overlapped data’ Pred:

’Overlappeddata’

Fig. 5: Sample predictions on our own generated overlapped hand-
writing.

overwritten. Furthermore, some of the faulty predictions could be
forgiven, such as the last word ’sudden’ in Fig. 4(c) which has been
recognized as "suddm’.

4.3.2. Handwriting Recognition with Variability

Recall that our goal is to achieve handwriting recognition with vari-
ability which often leads to overlapped handwriting. Our solution is
that in addition to the coordinate information w, h,the time stamp ¢
of each pen point should be included as an additional input feature
to the model. Model training is implemented in the same way as in
Sec. 4.3.1.

Due to a lack of datasets representing overlapped handwritten
text in the IAM-OnDB database, for the purposes of validation, we
generated a small dataset of our own handwriting using a similar
E-beam system. We can tell from Table. 1 that adding time informa-
tion as an additional feature leads to marginal degradation in perfor-
mance. Importantly, our model using coordinate information as well
as time stamp was able to reliably recognize overlapped handwriting
Fig. 5. This is, to the best of our knowledge, the first demonstra-
tion of recognition of overlapped handwritten text involving realistic
handwriting variability.

Student Model Training Strategy CER(%)
Randomly pick teachers’ predictions 7.51
Randomly pick teachers’ predictions

& true labels 7.78

Use true labels 8.15

[18] use LSTM model as teacher 9.26
Randomly pick LSTM model’s

predictions & true labels 7.54

Table 2: Knowledge Distillation for CTC networks

Training Strategy CER(%) | Model Size (MB)
LSTM Model 5.66 8.4
Student model trained following
proposed KD strategy 7.51 [ 2.5
8-bit LSTM [5] [ 6.45 [ 6.2

Table 3: Model Compression

4.3.3. Knowledge Distillation for Model compression

The results of the knowledge distillation experiments are reported
in Table 2. Our LSTM, peephole-LSTM and Minimal-RNN models
were used as three teachers, and we tried to train a uni-directional
GRU student model. As expected, the student model trained with
just true label achieved the worst performance, whereas using a ran-
dom mixture of three teacher models’ prediction as true label per-
formed the best. Even though the trained sudent model did not out-
perform any of the teachers, it still achieved a reasonable level of
accuracy.

We also compared our approach with the knowledge distillation
method proposed in [18], for which our LSTM model was used as
the teacher model. It is clear that using the same teacher model, our
proposed knowledge distillation strategy resulted in a better student
model, as shown in Table 2.

Furthermore,we explored other methods for model compression.
Based on [5], we implemented the bit-constrained LSTM network
and the results are shown in Table 3. 8-bit constraint for [5] was ap-
plied since 4-bit constraint leads to model divergence. Importantly,
our student model trained following the proposed knowledge distil-
lation strategy achieved a much larger model compression rate while
attaining a similar level of recognition accuracy.

5. CONCLUDING REMARKS AND FUTURE WORK

With the goal of improving handwriting interface on smart devices,
we studied the problem of handwriting recognition with variabil-
ity in this work. Using a hybrid model of BLSTM and CTC, our
model outperformed all previously reported approaches on IAM-
OnDB database with minimal preprocessing. To cope with handwrit-
ing variability caused by limited writing space or user movement, we
proposed a simple but effective solution of using the time stamp in
addition to the coordinates of the pen positions. A novel knowledge
distillation methodology was also developed to further enable model
inference on smart devices with resource constraints.

Future directions involves enabling learning on smart devices
so that user’s handwriting style can be individually treated and op-
timized. In addition, special weight matrix structures could be ex-
plored to further accelerate on-device model learning and inference.
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