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ABSTRACT

We develop a privacy-preserving distributed strategy over multitask
diffusion networks, where each agent is interested in not only im-
proving its local inference performance via in-network cooperation,
but also protecting its own individual task against privacy leakage.
In the proposed strategy, at each time instant, each agent sends a
noisy estimate, which is its local intermediate estimate corrupted by
a zero-mean additive noise, to its neighboring agents. We derive a
sufficient condition to determine the amount of noise to add to each
agent’s intermediate estimate to achieve an optimal trade-off be-
tween the steady-state network mean-square-deviation and an infer-
ence privacy constraint. We show that the proposed noise powers are
bounded and convergent, which leads to mean-square convergence
of the proposed privacy-preserving multitask diffusion scheme. Sim-
ulation results demonstrate that the proposed strategy is able to bal-
ance the trade-off between estimation accuracy and privacy preser-
vation.

Index Terms— Distributed strategies, diffusion strategies, mul-
titask networks, privacy preservation, additive noises

1. INTRODUCTION

In multitask diffusion networks, a set of interconnected agents work
collaboratively to estimate different but related parameters of inter-
est [1]. In order to make use of the relationship between different
tasks for better inference performance, local estimates are exchanged
amongst agents within the same neighborhood. However, each agent
may wish to protect its own local parameters of interest and prevent
other agents in the network from accurately inferring these param-
eters. Sharing its local estimate may raise privacy concerns. For
example, in an Internet of Things (IoT) network, sensors are de-
ployed in smart grids, traffic monitoring, health monitoring, home
monitoring and other applications [2–4]. Although different IoT or
edge computing devices may have their local objectives, they can
exchange information with each other or service providers [5–8] to
improve inferences and services. This may lead to unnecessary pri-
vacy leakage.

To protect the privacy of the data being exchanged between
agents in a distributed network, the works [9–14] propose local
differential privacy mechanisms, while [15–18] develop privacy-
preserving distributed data analytics. However, these approaches
may lead to a significant trade-off in estimation accuracy as they do
not specifically protect the privacy of the parameters of interest. To
achieve inference privacy in a decentralized IoT network, [19–23]
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propose nonparametric approaches with information privacy guar-
antees, while [24–27] propose to map the agents’ raw observations
into a lower dimensional subspace. These inference privacy works
assume that all agents in the network are interested in inferring the
same parameters or hypothesis of interest.

The objective of this work is to develop a privacy-preserving
diffusion strategy over multitask networks, which balances the trade-
off between estimation accuracy and privacy preservation of agents’
local parameters or tasks. Specifically, we consider multitask esti-
mation problems where the unknown parameters of interest within
each neighborhood are linearly related with each other [1]. Such
problems widely exist in applications such as electrical networks,
telecommunication networks, and pipeline networks [1]. Different
from the strategy in [1], which does not take privacy preservation
into consideration, we propose to sanitize each agent’s intermediate
estimate before sharing it with its neighbors by adding an appropri-
ate zero-mean noise to the intermediate estimate. We study how to
design the power of the noise added to optimize the trade-off be-
tween the network mean-square-deviation (MSD) and the inference
privacy of each agent’s local parameters, measured by its neighbors’
mean-square error in estimating the agent’s local parameters. In ad-
dition, the reference [28] considers data privacy of the agents’ local
measurements in a single-task network, which is different from this
paper in network settings and privacy mechanisms.

The rest of this paper is organized as follows. In Section 2, we
formulate the multitask estimate problem considered in this paper.
A privacy-preserving multitask diffusion scheme is then proposed to
solve the problem in Section 3, where a zero-mean additive noise
is added to the intermediate estimate that is communicated to the
neighboring agents. We study the choice guideline for powers of the
additive noises, and examine the boundedness and convergence of
the proposed powers in Section 4. We present the simulation results
in Section 5. Section 6 concludes the paper. Due to space constraint,
we omit several technical details and all proofs in this paper. We
refer the reader to [29] for an extended version of this paper.

Notations: We use lowercase letters to denote vectors and
scalars, uppercase letters for matrices, plain letters for deterministic
variables, and boldface letters for random variables. We also use
(·)T to denote transposition, (·)−1 for matrix inversion, Tr (·) for
the trace of a matrix, col {·} for a column vector, row {·} for a row
vector, ‖·‖ for the two-induced norm of a matrix or the Euclidean
norm of a vector, and ⊗ for Kronecker product.

2. LINEARLY RELATED MULTITASK NETWORK

In this section, we present our system model, and give a brief in-
troduction to multitask networks, where neighboring agents’ tasks
are linearly related. Consider a strongly-connected network of N
agents, where information can flow in either direction between any
two connected agents [30]. At each time instant i, each agent k has
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access to a scalar observation dk(i), and an Mk × 1 regression vec-
tor uk(i). The random data {dk(i),uk(i)} are related via the linear
regression model

dk(i) = u
T
k(i)w

o
k + vk(i) (1)

where the scalar vk(i) is measurement noise, wo
k is an Mk × 1 un-

known random vector, with mean Ewo
k and covariance matrix

Wkk = E
[
(wo

k − Ewo
k)(w

o
k − Ewo

k)
T
]
. (2)

Note that although we assume that the parameter vector wo
k is ran-

dom instead of being a deterministic parameter vector, like most of
the literature on diffusion strategies [1, 28, 30], we assume that the
parameter vector wo

k is fixed at a certain realization wok during the
diffusion estimation process. Since our goal is to develop inference
privacy mechanisms that lead to high estimation errors, on average,
of agent k’s local parameterswo

k by other agents {` 6= k}, we adopt
a Bayesian framework for the privacy criterion.

We make the following assumptions regarding model (1):
(a) firstly, the measurement noise vk(i) is white over time, with
zero mean, and a variance of σ2

v,k; (b) secondly, the regression
data {uk(i)} are zero-mean, white over time and space with
Euk(i)uT

k(i) = Ru,k, where Ru,k is symmetric positive definite;
and (c) thirdly, the random data {wo

k,u`(i),vm(j)} are indepen-
dent of each other for any agent k, `,m and any time instant i, j.

The objective of each agent k is to find the minimizer of the
following mean-square-error cost function:

Jk(wk) = E
[
(dk(i)− uT

k(i)wk)
2
∣∣∣wo

k = wok

]
. (3)

Let Nk be the set of all neighboring agents of agent k, including
agent k itself. Assume that neighboring tasks {wo

k,w
o
`} for any

` ∈ Nk are involved in at least one linear equality [1]. Then, the
objective for the entire network is to find the optimal solution to the
following constrained optimization problem [1]:

min
w1,...,wN

J(w1, . . . , wN ) =

N∑
k=1

Jk(wk)

s. t.
∑
k∈Iq

Dqkwk + bq = 0, for q = 1, . . . , Q

(4)

where the subscript “q” is the index of the linear equality, the set
Iq includes all agents involved in the q-th equality, the coefficient
matrix Dqk and constant vector bq are of size Lq ×Mk and Lq × 1,
respectively. Let w = col {w1, . . . , wN}. We proceed to rewrite the
constraints in (4) more compactlyDw+ b = 0, where matrixD is a
Q × N block matrix with blocks {Dqk} for any q = 1, . . . , Q and
k = 1, . . . , N , and vector b is aQ×1 block vector with blocks {bq}
for any q = 1, . . . , Q. Let jk be the total number of linear equalities
that agent k is involved in. We make the same assumption as [1]
below.

Assumption 1. (Linear equality) Each agent k is involved in at least
one linear equality constraint, i.e., jk ≥ 1. Each agent k has access
to all jk linear equalities that it is involved in. In addition, all agents
involved in these jk linear equalities are inside Nk, i.e., Iq ⊂ Nk
for any k ∈ Iq . Matrix D is full row-rank.

As demonstrated in [1], each agent k can benefit through co-
operation with neighboring agents by sharing their local parameter
estimates with their neighbors, which enables it to leverage the lin-
ear relationships, i.e., the linear equality constraints in (4), and its

neighbors’ parameter estimates to improve its own inference accu-
racy. In this paper, we consider the scenario where agent k also
wants to prevent other agents from inferring its own task wo

k. Thus,
a privacy-preserving distributed solution is required to balance the
trade-off between estimation accuracy and privacy protection of the
individual tasks.

3. PRIVACY-PRESERVING DIFFUSION STRATEGY

In this section, we propose a simple inference privacy mechanism
to protect each agent’s local task by adding noise to its interme-
diate estimate before sharing with its neighbors. We then propose
a utility-privacy optimization trade-off to determine the amount of
noise to add. We start off with some definitions, which are required
to describe our privacy-preserving diffusion strategy.

Let iq = |Iq| be the number of agents that are involved in the
q-th constraint. Let

Dq = row {Dq`}`∈Iq (5)

be a 1 × iq block matrix, which collects all the coefficient matri-
ces that are defined by the q-th constraint. Let Mq =

∑
`∈Iq M`.

Define

Pq = IMq −D
T
q (DqDT

q )
−1Dq (6)

fq = DT
q (DqDT

q )
−1bq (7)

where IM denotes an M ×M identity matrix. Now, we rewrite the
iq × iq block matrix Pq = {[Pq]k,`}{k,`}⊂Iq , where the Mk ×M`

(k, `)-th block of Pq , [Pq]k,`, is defined as

[Pq]k,`

=

{
IMk −D

T
qk(DqDT

q )
−1Dqk, if k = `, and k ∈ Iq ,

−DT
qk(DqDT

q )
−1Dq`, if k 6= `, and {k, `} ⊂ Iq .

(8)

Likewise, we rewrite the iq × 1 block vector fq = col {[fq]k}k∈Iq ,
with the Mk × 1 k-th block entry

[fq]k = DT
qk(DqDT

q )
−1bq.

Then, each agent k in the network is expanded into a cluster of jk
virtual sub-agents, {km}jkm=1, so that each sub-agent km is only in-
volved in one constraint [1]. Let Ie,q be the set of sub-agent indices
involved in the q-th constraint, for any q = 1, . . . , Q. Then, if ` ∈ Iq
holds for some agent ` and constraint index q, it follows that there is
a unique sub-agent `n, where n ∈ {1, . . . , j`}, such that `n ∈ Ie,q .
Now, if a sub-agent km ∈ Ie,q , for any m = 1, . . . , jk, we proceed
to introduce the notations Pkm and fkm as the k-th block row of Pq
and fq , respectively.

In our privacy-preserving diffusion strategy, we initialize wk
(−1) = 0 for every agent k in the network. Given data {dk(i),
uk(i)} for each time instant i ≥ 0, and for each agent k =
1, . . . , N , we perform the following steps iteratively:

1. Adaptation. Each agent k updates the current estimate
wk(i − 1) with respect to (w.r.t.) wo

k = wok to an inter-
mediate estimate ψk(i) by following the stochastic gradient
descent (SGD) algorithm

ψk(i) = wk(i− 1) +
µk
jk
uk(i)

(
dk(i)− uT

k(i)wk(i− 1)
)

(9)

where µk > 0 is the step-size parameter at agent k.

7601



2. Exchange. Each agent k collects estimates {ψ′`(i)} from
neighboring agents {` ∈ Nk}

ψ′`(i) =

{
ψ`(i) + n`(i), if ` ∈ Nk, and ` 6= k,
ψk(i), if ` = k

(10)

where the random additive noise vector n`(i) is of sizeM`×
1.

3. Projection. For each of the jk linear equality constraints that
agent k is involved in, do

φkm(i) = Pkm · col
{
ψ′`(i)

}
`∈Iq

− fkm (11)

for any km ∈ Ie,q,m = 1, . . . , jk, and which generates a
total of jk intermediate estimates {φkm(i)}jkm=1.

4. Combination. Each agent k takes the average over jk in-
termediate estimates {φkm(i)}, and obtains a new estimate,
wk(i), of the unknown parameter vectorwo

k = wok

wk(i) =
1

jk

jk∑
m=1

φkm(i). (12)

Remark 1: The difference between the proposed privacy-preser-
ving diffusion strategy (9) to (12) and the existing scheme in [1] is
in the exchange step. Specifically, in order to protect each individual
task wo

k against privacy leakage, each agent k sends a noisy inter-
mediate estimate ψ′k(i), instead of the true estimate ψk(i) as in [1],
to its neighboring agents. We call nk(i) a privacy mechanism noise.

To allow a distributed implementation of the privacy mecha-
nism, we make the following assumption.

Assumption 2. (Privacy mechanism noise) The entries of nk(i)
at time i, for any k = 1, . . . , N , are independent and identically
distributed (i.i.d.), with zero mean and a time-varying variance of
σ2
n,k(i). The random noises {nk(i)} are white over time and space.

The random process {nk(i)} is independent of any other random
processes.

From Assumption 2, each agent k generates the noise nk(i) in-
dependently of other agents in the network, and also independently
over time instants i. We also have

Rn,k(i) , E
[
nk(i)n

T
k(i)

]
= σ2

n,k(i)IMk , (13)

which is a time-varying matrix.
For the utility achieved by the network of agents, we consider

the steady-state network MSD [30, p.583]

MSDnet = lim
i→∞

1

N

N∑
k=1

E‖wo
k −wk(i)‖2, (14)

where a smaller MSDnet gives a better utility. Let

Ukk(i) = E
[
(wo

k − Ewo
k)(ψ

′
k(i)− Eψ′k(i))T

]
(15)

Rψ′,k(i) = E
[(
ψ′k(i)− Eψ′k(i)

) (
ψ′k(i)− Eψ′k(i)

)T] (16)

for any agent k = 1, . . . , N . Let

ŵk|ψ′
k
(i) = Ukk(i)R

−1
ψ′,k(i)

(
ψ′k(i)− Eψ′k(i)

)
+ Ewo

k

be the linear least-mean-square estimator (l.l.m.s.e.) [31, p.66] ofwo
k

at time instant i, givenψ′k(i). Our goal is to determine the variances
of the privacy mechanism noises {σ2

n,k(i)} to

min MSDnet

s. t. E
∥∥∥wo

k − ŵk|ψ′
k
(i)
∥∥∥2 ≥ δk, for k = 1, . . . , N, i ≥ 0

(17)

for non-negative thresholds {δk ≥ 0}, which are chosen according
to privacy requirements.

Remark 2: In (17), it is required that at each time instant i ≥ 0,

the expected squared distance
∥∥∥wo

k − ŵk|ψ′
k
(i)
∥∥∥2 over all realiza-

tions of wo
k is no smaller than the predefined parameter δk. This

provides an inference privacy constraint on the ability of a neighbor-
ing agent to agent k in accurately estimatingwo

k on average.

4. PRIVACY MECHANISM NOISE DESIGN AND
CONVERGENCE ANALYSIS

In this section, we present an approximate solution to (17) by deriv-
ing a sufficient condition for the privacy constraint in (17). We are
also able to show that the proposed variances {σ2

n,k(i)} converge as
i→∞ for each agent k.

We start with the following sufficient condition for the variance
of the privacy mechanism noise σ2

n,k(i) to satisfy the privacy con-
straint in (17) for each agent k and each time instant i ≥ 0.

Theorem 1. (Sufficient condition) It holds that if

σ2
n,k(i) ≥

Tr
(
UT
kk(i)Ukk(i)

)
Tr (Wkk)− δk

(18)

for any agent k and any time instant i ≥ 0, and where the quan-
tity Ukk(i) is defined by (15), then the privacy constraint in (17) is
satisfied.

Note that the steady-state network MSD, MSDnet, is a mono-
tonically increasing function w.r.t. the steady-state variances of the
privacy mechanism noises {σ2

n,k(i)} as i → ∞ (see Theorem 1
in [29] for details). Then, we set for all k and all i ≥ 0

σ2
n,k(i) =

Tr
(
UT
kk(i)Ukk(i)

)
Tr (Wkk)− δk

, (19)

which is the smallest value that satisfies the sufficient condition (18).
Let

wo
e = col {1jk ⊗w

o
k}Nk=1 , ψ

′
e(i) = col

{
1jk ⊗ψ

′
k(i)

}N
k=1

,

where 1M denotes an M × 1 vector with all its entries equal to
one, and the subscript ‘e’ indicates the extended version of the cor-
responding quantity after the virtual sub-agents are introduced into
the network. Then, the quantity {Ukk(i)} can be evaluated by for-
mulating the recursion for the covariance matrix

Ue(i) = E
[
(wo

e − Ewo
e)(ψ

′
e(i)− Eψ′e(i))T

]
for any time instant i ≥ 0, with an initial value Ue(0) (see Section
IV-B in [29] for details).

Now, we proceed to show that the proposed variance sequence
{σ2

n,k(i)} in (19) for each agent k is bounded and convergent. We
start by noting that {0 ≤ δk < Tr (Wkk)} is required in order
to ensure that {σ2

n,k(i) > 0}. This follows from (19), where the
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numerator Tr
(
UT
kk(i)Ukk(i)

)
> 0 since the matrix UT

kk(i)Ukk(i)
is symmetric positive semi-definite. Then, it follows from Section
IV-C in [29] that limi→∞ Ukk(i) =Wkk. Substituting into the right
hand side of (19) gives

lim
i→∞

σ2
n,k(i) =

Tr
(
WT
kkWkk

)
Tr (Wkk)− δk

. (20)

5. SIMULATION RESULTS

In this section, we test performance of the proposed privacy-
preserving multitask diffusion algorithm in terms of network in-
ference privacy and network MSD. For comparison, we also test
performance of the multitask diffusion algorithm [1] and the non-
cooperative least-mean-squares (LMS) algorithm, where each agent
k updates estimate of wo

k from wk(i − 1) to wk(i) by following
the LMS algorithm [31, p.165]. Specifically, in the test of privacy-
preserving performance, we consider at time instant i ≥ 0: (a) for
the multitask diffusion algorithm without privacy mechanism noises,
a neighboring agent ` ∈ Nk\{k}, where Nk\{k} stands for the set
after removing agent k from Nk, uses both intermediate estimates
{ψ`(i),ψk(i)} to inferwo

k; (b) for the proposed privacy-preserving
multitask diffusion algorithm, a neighboring agent ` ∈ Nk\{k}
uses estimates {ψ`(i),ψ′k(i)} to infer wo

k; and (c) for the non-
cooperative LMS algorithm, a neighboring agent ` ∈ Nk\{k} uses
its own estimate w`(i) to infer wo

k. Let nk = |Nk| be the cardinal-
ity ofNk. Now, we proceed to introduce the following mean-square
errors to quantify the network inference privacy of local parameters
{wo

k} at each time instant i:

ξcoop, noise
net (i)

=
1

N

N∑
k=1

1

nk − 1

∑
`∈Nk\{k}

E
[∥∥∥wo

k − ŵk|{ψ′
k
,ψ`}(i)

∥∥∥2]
(21a)

ξcoop, w/o noise
net (i)

=
1

N

N∑
k=1

1

nk − 1

∑
`∈Nk\{k}

E
[∥∥wo

k − ŵk|{ψk,ψ`}(i)
∥∥2]

(21b)

ξncop
net (i) =

1

N

N∑
k=1

1

nk − 1

∑
`∈Nk\{k}

E
[∥∥wo

k − ŵk|w`
(i)
∥∥2]

(21c)

where the superscripts “coop, noise”, “coop, w/o noise”, and “ncop”
denote the quantities for cooperative case with privacy mechanism
noises, cooperative case without privacy mechanism noises and non-
cooperative case, respectively.

As shown by Fig. 1a, we consider the case when there areN = 6
agents in the network. The random data {uk(i),vk(i)} are inde-
pendent, normally distributed with zero mean, and white over time
and space. The lengths of the unknown parameter vectors {wo

k} are
{Mk = 2}. The agents in the network are involved in Q = 5 linear
equality constraints, each of the form [1]:∑

k∈Iq

dqkwk + bq = 0

with the scalar parameters {dqk, bq} randomly selected from [−3,
−1] ∪ [1, 3]. Let

SNRk = 10 log10

(
E
[
(uT

k(i)w
o
k)

2
]
/σ2

v,k

)

Table 1: Steady-state Network MSD.

Multitask
Diffusion [1]

Proposed
Algorithm

Non-coop.
LMS

MSDnet (dB) −7.065 −3.087 −2.421

be the signal-to-noise ratio (SNR) at agent k. Then, the parameters
{Ru,k,Wkk,Ewo

k, σ
2
v,k} are adjusted to make {SNRk} as shown by

Fig. 1b. For the step-size parameters, we set {µk/jk = 0.02} in the
cooperative cases, and {µk = 0.02} in the non-cooperative case. In
addition, we set the thresholds {δk = 0.3Tr (Wkk)}. Fig. 2 shows
the network inference privacy, defined by (21), learning curves of
the tested strategies, in order to evaluate the privacy-preserving per-
formance of the related schemes. In addition, Table 1 shows the
steady-state network MSD defined by (14), which are averaged over
10000 independent realizations of {wo

k}. It is clear from Fig. 2
and Table 1 that under the tested privacy requirement, the proposed
privacy-preserving multitask diffusion strategy is able to balance the
trade-off between estimation accuracy and privacy protection.

(a)

1 2 3 4 5 6
Node index, k

-20

-10

0

10

20

30

S
N

R
k

(d
B
)

(b)

Fig. 1: Network topology consisting of N = 6 agents (left) and
SNRs across the agents (right).

0 20 40 60 80
-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

Fig. 2: Network inference privacy learning curves.

6. CONCLUSION

We have developed a privacy-preserving diffusion strategy over mul-
titask networks, which is able to protect each agent’s local task by
adding a privacy mechanism noise before sharing with its neighbors.
We have proposed a utility-privacy optimization trade-off to deter-
mine the amount of noise to add. We have derived a sufficient condi-
tion for the powers of the privacy mechanism noises which satisfies
the proposed privacy constraints. We have shown that the proposed
powers are bounded and convergent. We have presented simulation
results to demonstrate that the proposed scheme is able to balance
the trade-off between network MSD and network inference privacy.
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