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ABSTRACT

Wireless sensor network (WSN) data is prone to huge losses
and corruption. Hence, the existing matrix completion algo-
rithms experience high estimation errors in such scenarios.
Therefore, a robust matrix completion algorithm is required
for WSN data to meet the above challenges. This paper
proposes a robust “two stage matrix completion (TS-MC)”
algorithm to recover data from missing and corrupted values.
The proposed TS-MC algorithm consists of two stages. For
the first stage, two different methods have been proposed for
recovering the incomplete data that exploit the double DCT
sparsity as WSN data varies smoothly in both time and spa-
tial domain. In the second stage, the recovered data of the
first stage is de-noised in the matrix factorization framework,
wherein the rank of the data is estimated from the data re-
covered from the first stage. Simulations are performed on
two real datasets of Intel Lab and Data Sensing Lab. Results
demonstrate that the proposed TS-MC algorithm achieves
high accuracy even when 90% of the data is missing.

Index Terms— Matrix completion, wireless sensor net-
work, data loss, DCT based recovery

1. INTRODUCTION

In recent years, wireless sensor networks (WSNs) are being
widely used for both critical as well as non-critical applica-
tions. The data collected by sensor nodes face huge losses
and corruption due to hardware impairments and severe en-
vironmental conditions such as deep fading. For critical ap-
plications such as detection of the forest fire, ocean currents,
chemical pills and earthquake, it is essential to obtain com-
plete data accurately at the fusion centre (FC) for making an
appropriate decision. Previously, to recover the missing and
corrupted data in WSN, various interpolation techniques such
as K-nearest neighbours (KNN) [1], and Delaunay Triangu-
lation (DT) [2] have been used. However, in huge losses, the
accuracy of the above techniques are deemed insufficient.

Missing values are effectively recovered by using the low-
rank constraint in various applications such as recommender
systems, image inpainting and WSN, since most of the real
world signals are low rank. However, minimizing the rank of

the data is an NP-hard problem. Therefore, the sum of the sin-
gular values (nuclear norm) of a data is generally minimized
by using the algorithm such as singular value thresholding
(SVT) [3]. The rank of the data can also be minimized by
using matrix factorization algorithm, in which the data ma-
trix X of size, say, n × t is factorized into two matrices of
size n × r and r × t, where r is the rank of the data. How-
ever, the rank of an incomplete matrix can not be determined.
Hence, a low-rank matrix fitting (LMaFit) algorithm [4] has
been presented for matrix completion (MC), in which r is dy-
namically adjusted. Further, RPCA (robust principal compo-
nent analysis) [5] is also one of the known method used for
matrix completion in the noisy environment, in which the data
matrix X is assumed to be the sum of a low rank matrix (L)
and a sparse matrix (S). Hence, along with minimizing the
nuclear norm of L, the algorithm also minimizes the l1 norm
of S. Several fast and efficient algorithms have been proposed
to solve RPCA problem [6, 7]. In [6], Robust PCA has been
solved via gradient descent method. This method is called as
RPCA-GD. In [8], spatial and temporal correlation along with
the rank constraint have been exploited to recover the missing
data in WSN. However, this algorithm requires the rank of the
data and topology of the sensor nodes, which is generally not
available. Furthermore, during huge losses, the correlation
factor also gets affected. Hence, the algorithm experiences
high estimation errors.

In order to meet the above challenges, two algorithms em-
ploying “two stage matrix completion (TS-MC)” for WSN
have been proposed in this paper. Both the proposed algo-
rithms of TS-MC outperform various matrix completion al-
gorithms and do not require any prior knowledge of the data
such as the rank or the network topology. In the first stage
of TS-MC, both algorithms named as TS-MC-1 and TS-MC-
2 exploited the DCT sparsifying domain, as the real signals
are sparse in the DCT domain [9]. However, the implemen-
tation of both algorithms is different. In the first stage of
TS-MC-1, matrix completion is performed by minimizing the
DCT coefficients jointly in both spatial and temporal domain.
In the first stage of TS-MC-2, missing data recovery prob-
lem is formulated as a compressive sensing (CS) problem,
where the sensing matrix will be the partial canonical iden-
tity (PCI) matrix which represents the missing data position.
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Since PCI sensing matrix is highly incoherent with the DCT
matrix [10], this combination is able to recover the missing
data with good accuracy. In the second stage of both the
algorithms, the recovered data from the first stage is further
de-noised using matrix factorization framework. The rank re-
quired for matrix factorization can be estimated from the data
recovered from the first stage. To validate the performance
of the proposed algorithm, results have been compared with
various state-of-the-art matrix completion algorithms such as
SVT [3], LMaFit [4], OptSpace [11] and RPCA-GD [6] on
real dataset of Intel Lab and Data Sensing Lab.

Notations: Matrices are represented in capital and bold
letters, vectors in small-case and bold letters, and variables
are written in italics. Transpose of a matrix or vector is de-
noted as (·)T , vectorization of matrix is denoted as ‘(:)’. Fur-
ther, R represents real number and ‘•’ denotes element wise
multiplication. The element corresponds to ith row and jth

column of a matrix A is represented as A(i, j). Furthermore,
||.||F represents Frobenius norm and ||.||p represents the lp
norm, where 0 ≤ p ≤ 2. Ia represents the identity matrix of
size a and 0a×b represents zero matrix of size a×b. The noise
considered in this paper is additive white Gaussian noise with
zero mean and unit variance.

2. PROPOSED ALGORITHMS

Consider a wireless sensing network consisting of ‘n’ sensor
nodes. Let us assume that ‘t’ measurements are transmitted
from each sensor node. Hence, the transmitted matrix X will
have a dimension of n × t. The received incomplete noisy
matrix is given as Y = B • (X + N), where B is the binary
matrix consists of ‘1’ and ‘0’ at the position where data is
present and absent, respectively, • is the element-wise product
and N is the noise matrix.

2.1. First stage

In the first stage, we have exploited the fact that most of the
real signal varies slowly. In [9], it has been shown that DCT
acts like a Karhunen-Loève (KL) type basis for a large class
of smooth signals and hence, may act as one of the best spar-
sifying basis for these signals. Further, the WSN data is slow-
varying in both temporal and spatial domain and hence, DCT
can be exploited for the both domains. Therefore, in the first
stage, the missing data is recovered by exploiting the above
fact by using the following methods.

2.1.1. Method of TS-MC-1

In this method, the matrix completion problem is formulated
as

min
X
||Y− B • X||2F + λ1||D1XD2||1, (1)

where D1 and D2 are the DCT matrices of size n × n and
t × t, respectively. The constraint ||D1XD2||1 used in (1)

enforces the double DCT sparsity as data is slowly-varying in
both spatial and temporal domains. Further, λ1 ∈ R is the
regularization parameter that controls the trade-off between
data accuracy and the sparsity level. A proxy variable W is
introduced to rewrite (1) as

min
X,W
||Y− B • X||2F + λ1||W||1 + λ2||W− D1XD2||2F , (2)

where λ2 is the controlling parameter to control the degree of
equality between the original term and the proxy variable. For
small value of λ1, the equality constraint is relaxed and for
high value of λ1, the constraint is enforced. The above prob-
lem (2) can be divided into the following sub-problems by us-
ing the alternating direction method of multipliers (ADMM):

P1 : min
W
||W− D1XD2||2F + λa||W||1

(
∵ λa =

λ1
λ2

)
,

P2 : min
X
||Y− B • X||2F + λ2||W− D1XD2||2F (3)

P1 can be solved using soft-thresholding [12] and P2 is a sim-
ple least squares problem.

Algorithm 1 TS-MC-1

Input: B, Y, D1, D2, Xint, λa, µ, maxiter1, maxiter2
Initializing: X = Xint
Obtain Bc such that Bc(i, j) =

{
1 if B(i, j) = 0
0 if B(i, j) = 1

for k1 = 1 : maxiter1
W = sgn(D1XD2)max(0, |D1XD2| − 0.5λa)

1

X = DT1 WDT2
X = Y + Bc • X

end[
U D V

]
= svd(X); svd is the singular value decom-

position.
d = diag(D); diag picks the diagonal elements.
r = number of highest values in d
for k2 = 1 : maxiter2

U← minU
∥∥[X̂ 0n×r

]
− U

[
V √

µIr
]∥∥2
F

V← minV

∥∥∥∥[ X̂
0r×t

]
−
[

U√
µIr

]
V
∥∥∥∥2
F

end
X=UV
Output: X

2.1.2. Method of TS-MC-2

In this method, the problem of missing data recovery is for-
mulated as a CS problem. According to the theory of CS, the
original data vector x of length p can be sensed to a lower di-
mensional vector y of length q, (q < p) using a sensing matrix
Φ of size q × p such that y = Φx. Assuming the vector x to

1sgn =

−1 if x < 0
0 if x = 0
1 if x > 0
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be sparse in Ψ domain, the compressive measurement vector
y in the presence of noise can be written as

y = Φ(x + np)
= ΦΨ−1s + nq (∵ s = Ψx,nq = Φnp) , (4)

where s is the sparse vector representation of original data x
and, np and nq are the noise vectors of length p and q, respec-
tively. The original data vector x of length p can be recovered
from y if Φ and Ψ−1 are mutually incoherent. The coherence
can be calculated as

µ(Φ,Ψ−1) =
√
pmax
∀i,j

∣∣〈Φi,Ψ
−1
j

〉∣∣
‖Φi‖2

∥∥Ψ−1j ∥∥
2

, (5)

with µ(Φ,Ψ−1) ∈ [1,
√
p]. Here, µ = 1 is the best case

which represents maximum incoherence between the matri-
ces. It is observed that the random matrices like Gaussian
and Bernoulli follow the above constraint with coherency of√
log p. Signal x can be recovered from y by solving the fol-

lowing optimization problem

ŝ = min
s
||y− As||22 + λ||s||1, (6a)

x̂ = Ψ−1ŝ, (6b)

where λ3 is the regularization parameter to control the level
of sparsity and the data accuracy. Iterative soft thresholding
algorithm (ISTA) [12] can be used to solve (6a).

In this paper, above theory has been utilized in the con-
text of matrix completion as follows. The data matrix X is
vectorized to a vector x of length nt. A sub-sampled vector y
of length m is obtained from the known entries of x such that
the signal y can be written as y = Φx, where Φ is the partial
canonical identity (PCI) sensing matrix of size m × nt. This
matrix will contain single ‘1’ in each row corresponding to the
available data and all remaining entries are zero. For exam-
ple, assume x =

[
x1 x2 x3 x4 x5 x6

]T
where only

x1 and x5 entries are received, then vector y will be equal to[
x1 x5

]T
and hence, the sensing matrix will be written as

Φ =

[
1 0 0 0 0 0
0 0 0 0 1 0

]
. The sparse representation of X

is given by S = D1XD2. Since D1 and D2 are DCT matrices,
X = DT1 SDT2 . Therefore, the observed entries of transmitted
data matrix X can be re-written as

y = ΦX(:) = Φx = Φ(D2 ⊗ DT1 )s, (7)

where s = S(:). From (7), we observe that the sparsifying
matrix is Ψ−1 = D2 ⊗DT1 . To recover the transmitted data x
using (6), PCI sensing matrix and (D2⊗DT1 ) must be incoher-
ent. The coherency between above matrices is calculated us-
ing (5) and is observed to be

√
2, that is indeed small. Hence,

this method ensure good data reconstruction. Compared to
TS-MC-1, this method also carries out de-noising of data.

2.2. Second stage

The data recovered from the first stage (X̂) is de-noised in
the second stage using matrix factorization such as X̂ = UV.
The dimension of U and V are chosen to be n × r and r ×
t, respectively, where r is the rank of the data that can be
estimated from X̂. The problem can be formulated as

min
U,V
||X̂− UV||2F + µ||U||2F + µ||V||2F . (8)

The problem in (8) can be divided into two sub-problems us-
ing ADMM as

P3 : U← min
U
||X̂− UV||2F + µ||U||2F ,

P4 : V← min
V
||X̂− UV||2F + µ||V||2F . (9)

The above sub-problems can be re-written as

P3 : U← min
U

∥∥[X̂ 0n×r
]
− U

[
V √

µIr
]∥∥2
F

P4 : V← min
V

∥∥∥∥[ X̂
0r×t

]
−

[
U√
µIr

]
V
∥∥∥∥2
F

. (10)

The above sub-problems are the simple least squares prob-
lems. Further, the transmitted matrix X can be recovered as
X̃ = UV. This is note that the second stage for both algo-
rithms TS-MC-1 and TS-MC-2 is same.

Algorithm 2 TS-MC-2

Input: Φ, y, D1, D2, xint, n, t, µ, λ3, maxiter1, maxiter2
Initializing: x = xint
H = Φ(D2 ⊗ DT1 )
α = max(eig(HTH))
for k1 = 1 : maxiter1

x = sgn(x+ 1
αHT y−Hx)max(0, |HT y−Hx| − λ3

2α )
1

end
X = reshape(x, (n, t)); reshape converts the vector x into a
matrix of size n× t.[
U D V

]
= svd(X); svd is the singular value decom-

position.
d = diag(D); diag picks the diagonal elements.
r = number of highest values in d
for k2 = 1 : maxiter2

U← minU
∥∥[X̂ 0n×r

]
− U

[
V √

µIr
]∥∥2
F

V← minV

∥∥∥∥[ X̂
0r×t

]
−
[

U√
µIr

]
V
∥∥∥∥2
F

end
X=UV
Output: X

3. SIMULATION RESULTS
In this section, the proposed algorithms (TS-MC-1, TS-MC-
2) have been compared with various other matrix completion
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algorithms such as SVT [3], LMaFit [4], OptSpace [11] and
RPCA-GD [6]. To validate the performance of the proposed
algorithms, results have been shown on real datasets of tem-
perature and humidity, taken from the Intel lab. We have also
compared the proposed algorithms on temperature dataset of
data sensing lab.

3.1. Intel Lab dataset
The data from 53 sensor nodes at every minute has been con-
sidered for 200 minutes in the simulation Hence, n = 53 and
t = 200. This is to note that out of nt = 10600 entries
only k = 7901 entries are available, hence for creating the
ground truth, few entries say g have been manually removed.
Hence, nt entries have been recovered from m = k − g en-
tries for all the algorithms. However, as ground truth is avail-
able only for the g entries. Therefore, data loss percentage
is computed as g

k × 100% and the normalized mean square
error (NMSE) 2 is also computed only for g values. In Fig.
1 and 2, NMSE has been plotted against data loss percent-
age at signal-to-noise power ratio (SNR) of 10 dB for tem-
perature and humidity dataset, respectively. From results,
we observe that both proposed algorithms of TS-MC outper-
forming the various MC algorithms. Furthermore, the per-
formance of TS-MC-2 is much better than TS-MC-1 at high
data loss. From Fig. 1, we observe that at 90% data loss, TS-
MC-1 is providing around 6 dB improvement, while TS-MC-
2 is providing around 12.5 dB improvement as compared to
LMaFit, OpTspace and RPCA-GD. Therefore, at higher data
losses, the proposed algorithm is outperforming very well,
and hence, in Fig. 3 we have plotted the NMSE with respect
to SNR for 90% data loss.
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LMaFit [4]
OptSpace [11]
RPCA-GD [6]
SVT [3]
Proposed: TS-MC-1
Proposed: TS-MC-2

Fig. 1: NMSE against data loss percentage at SNR = 10 dB for
humidity dataset taken from Intel lab

3.2. Data Sensing Lab
For further verification, we have also compared the algo-
rithms using the dataset of another lab (data sensing lab). In
this dataset, n = 38 sensor nodes are present and similar to
above t = 200 timestamps have been taken. Further, in this
dataset, 9.16% of entries are not available, as nt = 7600 and

2NMSE= ||x−x̂||22
||x||22

, where x is the original data and x̂ is the recovered

data.
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Fig. 2: NMSE against data loss percentage at SNR = 10 dB for
temperature dataset taken from Intel lab

k = 6904. Similar to above, in Fig. 4, NMSE for g entries
has been plotted against data loss percentage. The proposed
algorithms are consistently outperforming the conventional
MC algorithms on this dataset as well.
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Fig. 3: NMSE against SNR at 90% data loss for temperature dataset
taken from Intel lab
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Fig. 4: NMSE against data loss percentage at SNR = 10 dB for
temperature dataset taken from Data sensing lab

4. CONCLUSION AND FUTURE WORK

The proposed TS-MC algorithm is outperforming various MC
algorithms as tested on two datasets. At higher data loss of
90%, TS-MC is performing better than the conventional MC
algorithms by almost 12 dB. The proposed method can also be
explored for missing data recovery in a recommender system
and image inpainting applications, which will be a subject of
future work.
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