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ABSTRACT

Compressed sensing can be used to yield both compression and a
limited form of security to the readings of sensors. This can be most
useful when designing the low-resources sensor nodes that are the
backbone of IoT applications. Here, we propose to use chaining
of subsequent plaintexts to improve the robustness of CS-based en-
cryption against ciphertext-only attacks, known-plaintext attacks and
man-in-the-middle attacks.

Index Terms— compressed sensing, criptography, internet of
things

1. INTRODUCTION

The real-world deployment of systems inspired by the Internet of
Things (IoT) paradigm (see, e.g., [1], [2], and [3]) requires the
collection of data from a multitude of sensing nodes with minimal
energy footprint. This has increased the attention to the need of
guaranteeing the privacy of data gathered and distributed by low-
complexity networked devices in which every resource, including
those spent for security, must be tailored to the actual requirements
of each application.

Compressed Sensing (CS) is a signal acquisition technique em-
bedding implicit compression that has been investigated as a way of
implementing low-resources sensing nodes (see, e.g., [4][5]) and has
been proposed to also introduce security directly into the acquisition
process at the analog-to-information interface or jointly with digital
signal compression [6, 7, 8, 9, 10, 11, 12, 13].

In rough terms, what happens in CS is that chunks of an input
waveform are represented with fewer scalars than the number of
samples indicated by the Nyquist-Shannon theorem, which makes
CS very appealing for low-resources IoT nodes. Such a lower-
resource acquisition is possible assuming that the signal to process
is sparse, i.e. a proper basis exists such that the projection of any
input waveform over that basis has only few terms significantly dif-
ferent from zero. Acquisition (encoding) is practically achieved by
multiplication by a random matrix, whose knowledge is needed to
reconstruct the original signal via a non-linear decoding algorithm
[14]. Such a matrix can therefore be considered as a key which, once
shared between the IoT node and the corresponding gateway, guar-
antees a certain degree of secrecy without the need of any additional
cryptographic stage.

The main contribution of this paper is the application of chaining
techniques (i.e., the idea that every piece of encoded information in-
corporates a summary of previous pieces of information, as happens
in the block-chain technology already proposed in the IoT context
[15, 16, 17]) to improve the privacy level of CS acquisition, thus ob-
taining a solution for secure data transmission between an IoT node
and the gateway.
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Fig. 1. The upstream link and possible attacks in a distributed sens-
ing environment.

The paper is organized as follows. Section 2 describes the es-
sential steps in CS encoding and decoding. Section 3 frames CS
in the context of secure communication between sensor nodes and
gateways. Section 4 introduces chaining and its properties that
are exploited in Section 5 to show that the link has been hardened
against typical attacks. Due to space limitations proofs are only
sketched. Section 6 reports some empirical evidence and conclu-
sions are drawn at the end.

2. COMPRESSED SENSING AND BLOCK CIPHERS

The signal waveform is acquired as a sequence of time win-
dows, the t-th of which starts at discrete instant t. Within each
window n samples are collected that we arrange in the vector
xrts “ pxrts0, . . . , xrtsn´1q. If, given a numberB of bits, we define
ZpBq “

 

´2B´1, . . . , 2B´1
´ 1

(

and NpBq “
 

0, . . . , 2B ´ 1
(

then we have xrts P Z pBxqn for some Bx.
CS assumes that at most κ ! n entries of xrts are non-zero

[18]. Then, it multiplies xrts by an m ˆ n matrix Arts to obtain
a so-called measurement vector yrts “ Artsxrts. We will assume
that Arts is a random choice of ˘1 symbols generated by a Pseudo-
Random Number Generator (PRNG) [19].

Despite the fact the yrts is only m-dimensional, one may re-
cover the original signal xrts exploiting the sparsity prior to solve
the otherwise undetermined system of equations yrts “ Artsxrts.
In fact, it can be proved [18] that this may be done, under suitable
assumptions, by estimating x̂rts as

x̂rts “ arg min
x
}x}1 s.t. Artsx “ yrts (1)

where } ¨ }1 is the `1-norm, i.e., }x}1 “
řn´1
j“0 |xj |. This method

is called Basis Pursuit (BP) and gives ground to most non-greedy
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recovery algorithms commonly employed in CS (see, f.i., [20] and
references therein).

Since (1) is convex it admits a unique solution and since xrts
has integer entries, then yrts “ Artsxrts also has integer entries and
recovery can yield x̂rts “ xrts, i.e. and errorless reconstruction.

Theory ensures that this happens whenm isO pκ log pn{κqq [18,
14]. In practical cases m ! n and thus, since the data representing
the signal must be transmitted or stored, CS provides acquisition
with implicit compression.

Further to that, note that to recover the original signal, the de-
coder needs Arts, i.e., the seed of the PRNG used to generate it
which implicitly plays the role of a private key in a block cipher
scheme encrypting the plaintext xrts into the ciphertext yrts. The
corresponding decoded is (1) that uses the same key to recover the
plaintext.

3. A PROTECTED COMMUNICATION SCHEME
BETWEEN SENSORS AND GATEWAYS

In a classical abstract framework, a legitimate transmitter (Alice)
produces a ciphertext from a plaintext and transmits it to a receiver
(Bob). For us, Alice may represent the sensing subsystem of any IoT
device and Bob is the gateway collecting readings and feeding them
to the cloud. Figure 1 reports a schematic view of the link and of the
attackers.

Alice and Bob have agreed on the private key keyAB that should
ensure privacy of the upstream link from sensor to hub. The classical
way of exploiting CS as a block cipher is to make keyAB control the
PRNG that generates Arts [6, 7, 8, 13].

In Ciphertex-Only Attacks (COAs) the eavesdropper (Eve) ob-
serves the statistics of the ciphertext and tries to guess the plaintext.
It is known (see, e.g., [6, 8]) that when n is large, straightforward im-
plementation of CS almost completely hide the ciphertext since the
components in yrts are distributed as identical Gaussian whose vari-
ance is proportional to the average energy of xrts, which is therefore
the only leaking information.

Known-Plaintext Attacks (KPAs) are even more threatening
as they rely on side-information. Eve captures some plaintext-
ciphertext pairs from which she tries to identify the corresponding
encoding matrices and thus keyAB to be able decrypt future trans-
missions. Regrettably, KPAs are easy on sensor nodes. In fact, Eve
may deploy another node close to the attacked one, with the aim of
acquiring the same physical signal and thus knowing the plaintext.

Rejection of KPAs is not complete. Given xrts and yrts, finding
a matrixArtsmade of˘1 that is compatible with yrts “ Artsxrts is
quite easy. Security stems from the fact that the number of candidate
solutions Arts can be made so large that pinpointing the true matrix
can be made very hard [7].

In MMAs, the attacker (Mallory), sends messages to Bob pre-
tending to be Alice. To do so, Mallory knows the upstream key
keyAB . If an MMA is successful, Bob receives a counterfeited ver-
sion of potentially critical information.

In this paper, we embed chaining into encryption by CS to
increase robustness against COAs and KPAs and help countering
MMA attempts.

4. CS WITH CHAINING

Chaining is a common way of increasing the security of sequences of
block ciphers. Here we use it both as a signal masking technique and
to affect the reproducible PRNG. Figure 2 reports a block scheme of
the encoding and decoding stages.
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Fig. 2. Block scheme of an encoder and a decoder based on chained
CS.

Chaining is made on each component of the signal window by
defining a vector of Bc-bits digital words crts P NpBcqn that is
initialized by with cr0s “ keyAB and updated as

crt` 1s“H pcrts ` xrtsq“pα pcrts ` xrtsq ` βqmod 2Bc (2)

where we set β “ 1 and α “ 2Bc ´ 3 to guarantee that the con-
gruential mapping in the update preserves maximum length cycles
[21] and the hashing function H that remains implicitly defined is
applied component-by-component. The number of bits devoted to
each chain state isBc “ Bx`rlog2 ns and is equal to the number of
bits needed to encode each of the measurements in yrts “ Artsxrts
that results from the signed sum of n terms each encoded in Bx bits.

Before entering the linear encoding, the signal xrts is mixed
with the chain state and the ciphertext is computed as

zrts “ R
´

ArtsR
´

xrts ` crts ´ 2Bc´1
¯¯

(3)

where the signed-modulus Rpξq “
`

ξ mod 2Bc
˘

´ 2Bc´1
P

ZpBcq is applied component-by-component.
As far as the generation of Arts is concerned, though more so-

phisticated non-white PRNG may find applications in CS (see, e.g.,
[22] for rakeness-based CS1), to limit system complexity we here
adopt a simple Linear-Feedback-Shift-Register (LFSR) with BLFSR

bits. With this, if l1rts P NpBLFSRq is the integer encoding the state
from which the LFSR is run to produce the antipodal entries of the
matrix Arts, then

l1rts “

˜

l2rt´ 1s `
n´1
ÿ

j“0

crtsj

¸

mod 2BLFSR

where l2rts is the state of the LFSR at the end of the generation of
Arts,with l2r´1s “ keyAB mod 2BLFSR .

1a technique [23] to adapt Arts to the features of the input signals not
unlikely to what is done in (chaos-based) DS-CDMA where chip waveforms,
spreading sequence statistics and rake receivers taps can be jointly selected
to rake as much energy as possible at the received side [24][25].

7581



At each time instant the decoder receives zrts and knows the
chain state crts, since it knows the key and has decoded previous
transmissions reconstructing xrτ s for τ “ 0, . . . , t ´ 1. Hence it
may compute

yrts“zrts ´R
´

Arts
´

crts´2Bc´1
¯¯

“R pArtsxrtsq“Artsxrts

where the last equality holds since Bc is the number of bits needed
to represent each entry of Artsxrts. The current xrts can therefore
be obtained by BP.

5. HARDENING BY CHAINING

Chaining is a valuable tool in hardening CS-based encryption mainly
due to its fundamental property: under mild conditions on the statis-
tics of xrts the entries of crts tends to be uniformly distributed in
NpBcq for t Ñ 8. The proof of such a property can be sketched as
follows.

Focus on a single entry of crts (indicated as srts P NpBcq) and
on the corresponding entry of xrts (indicated as wrts P ZpBxq).
The evolution of srts can be seen as a trajectory of the discrete-time,
finite-state dynamic

srt` 1s “ H psrts ` wrtsq (4)

in which srts is the state and wrts is a perturbation applied at each
time-step. We know that our choice of parameters α “ 2Bc ´ 3
and β “ 1 make the unperturbed system periodic [21] with a period
going through all the 2Bc states. Due to the random nature of the
incoming signal, and thus of wrts, the evolution of (4) is no longer
deterministic but can modeled in statistical terms. To do so, define
prts as the vector of probabilities such that prtsj “ Prtsrts “ ju
and note that

prt` 1sj “
2Bc´1
ÿ

k“0

Prtsrt` 1s “ j|srts “ kuprtsk

where the transition probabilities Prtsrt`1s “ j|srts “ ku depend
on the statistics ofwrts and, if the latter is stationary, can be collected
in a time-invariant transition matrix P such that prt ` 1s “ Pprts.
Under very mild assumptions on the input, we have that P is a prim-
itive matrix, i.e., that P τ has no null entry for τ large enough. This
guarantees that there is an asymptotic pr8s that is the unique vec-
tor of probabilities such is invariant with respect to P , i.e., pr8s “
Ppr8s [26, chap I and II].

To see that pr8s is uniform, assume that srts is distributed
according to pr8s and consider srt ` 1s “ H psrts ` wrtsq “
H

`

psrts ` wrtsq mod 2Bc
˘

. Since srts is uniformly distributed
in NpBcq, also psrts ` wrtsq mod 2Bc is uniformly distributed
in NpBcq. Moreover, since the application of H would produce a
maximal cycle, H itself is a bijection from NpBcq to NpBcq and this
preserves uniformity.

Hence, for large t, components of crts distribute uniformly over
NpBcq. This has favorable security implications that may be distin-
guished depending on the attack we are trying to resist.

5.1. Robustness to COAs

We may recall (3) and decompose it by defining the intermediate
vectors arts “ R

`

xrts ` crts ´ 2Bc´1
˘

, brts “ Artsarts, and
zrts “ Rpbrtsq.

With this, we may first observe that if the components of crts are
uniformly distributed in NpBcq then arts has components uniformly
distributed in ZpBcq independently of the statistics of xrts.

Hence, independently of xrts, brts “ Artsarts is a linear map-
ping of a vector of fixed statistics. Moreover the average of the com-
ponents of brts is Erbrtss “ ErArtssarts “ 0 and the correlations
between the component of brts are in the matrix E

“

brtsbrtsJ
‰

“

artsE
“

ArtsArtsJ
‰

artsJ “ 0, where the last equalities depend on
the fact thatArts is made of independent antipodal symbols and thus
ErArtss “ 0 and E

“

ArtsArtsJ
‰

“ 0.
These are the same conditions that allow to prove (e.g., [6, 8])

that for large n the normalized result of the linear mapping, n´1{2brts
distributes as a vector of Gaussian, zero-mean, independent entries
with a variance equal to 1{n

řn´1
j“0 arts

2. In conventional configura-
tions, the average of such a variance is the information that brts leaks
about arts. Yet, in our case, since the statistics of arts is independent
of xrts, nothing about the plaintext can be detected by a statistical
analysis of the ciphertext.

5.2. Robustness to KPAs

In the conventional configuration, the vulnerability to KPAs stems
from the fact that at a certain τ , the plaintext is xrτ s and the ci-
phertext is yrτ s “ Arτ sxrτ s. In that case Arτ s can be computed by
solving a set of underdetermined diophantine equations. Our scheme
exposes zrτ s as the ciphertext. Hence, given zrτ s and xrτ s, Eve
must solve (3) for Arτ s and crτ s. Then, from Arτ s would like to in-
fer the state l1rτ s of the LFSR that, along with crτ s and xrτ s, allows
to compute the subsequent Arts for t ą τ and thus break the cipher.
The first step would be to solve

zrτ s ` 2Bcd “ Arτ sarτ s (5)

for arτ s unknown in ZpBcqn, for Arτ s made of antipodal symbols
and for d P t´n` 1, . . . , n´ 1un to model the effect of the signed-
modulus operation. Could arτ s be guessed, crτ swould be computed
by inverting arτ s “ R

`

xrτ s ` crτ s ´ 2Bc´1
˘

.
Since the entries of arτ s are uniformly distributed in their range,

we may apply the results in [7] and say that for any candidate d
and arτ s, the number of instances of Arτ s compatible with (5) is
´

2n´Bc
a

3{πn

¯m

for large n.

Due to the fact that neither d nor arτ s are known and must be si-
multaneously identified, the number of solutions to (5) among which
Eve is not able to discriminate will be much larger than that, thus
making KPAs even less threatening.

5.3. Robustness to MMAs

Mallory may try to impersonate Alice as she knows keyAB . Yet, the
state of the LFSR generating Arts depends on both keyAB and crts.

If Mallory steps in after the communication has been established
between Alice and Bob, she does not know the history of cipher-
textes and can reconstruct neither the state of the chain nor the state
of the LFSR that, instead is known to Bob.

More specifically, Mallory knows both cr0s and the initialization
of the LFSR since they both depend on keyAB . Hence, by solving
(3), she would be able to compute xr0s from the ciphertext zr0s and
thus cr1s and so on, computing each crts and l1rts from the corre-
sponding zrts. Each crts and l1rts can then used to encode a coun-
terfeited plaintext into a message that Bob believes to be authentic.

Yet, if she misses a certain zrτ s, then the corresponding xrτ s
would be unknown and since (2) needs xrτ s to compute crτ`1s also
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Fig. 3. Empirical probabilities of different values of the ciphertext in the three configurations (left-to-right k “ 3, k “ 6, and k “ 12) and
for different average energy of the plaintext.

Table 1. Tested configurations

n k m Bx Bc KPA"

128 3 27 8 15 5.3ˆ 10889

128 6 41 10 17 2.4ˆ 101326

128 12 57 12 19 4.7ˆ 101809

the latter will be unknown preventing Mallory from reconstructing
l1rτ s and thus Arτ ` 1s. Hence, for t ą τ , crts and l1rts will be
unknown, thus making impossible for Mallory to forge messages
accepted by Bob.

6. NUMERICAL EVIDENCE

We adopt a common setting in which the k non-zero components of
the signal vectors are selected at random among the n possible and
filled with integers uniformly distributed in a range t´X, . . . ,X ´

1u whereX ď 2Bx´1 can be chosen to set the average energy of the
whole vector x.

We adopt n “ 128, BLFSR “ 32 and test different settings that
are summarized in Table 1. The value ofm is found as the minimum
for which the decoder produces an errorless reconstruction for not
less than 4000 subsequent acquisitions. The last column of Table 1
contains a lower bound on the average number of indistinguishable
solutions that Eve would find in a KPA to quantify the intrinsic ro-
bustness to such attack.

For each configuration, we consider signals with different aver-
age energy, expressed as a fraction p of the maximum possible aver-
age energy corresponding to X “ 2Bc´1. From the 105 Montecarlo
trials of each simulation we estimate the distribution of the entries
of the ciphertext zrts on which all the security features substantially
hinge.

We match such an empirical distribution against the uniform one
by computing its Kolmogorov-Smirnov (KS) statistic [27, Chap-
ter 15]. The results are reported in the fourth column of Table 2
in which smaller values mean a more uniform distributions. As a
comparison, the value of the Kolmogorov-Smirnov statistic (KS) of
an equal number of samples generated in the same range by a truly
uniform distribution is reported in the fifth column. The sixth col-
umn reports the maximum Γ of the estimated correlation coefficients
between components of zrts, while the seventh column reports the

Table 2. Statistical analysis of the components of the ciphertext:
Kolmogorov-Smirnov statistics for the distribution of its compo-
nents matched against ideal uniform distribution and maximum of
the correlation between pairs of its components. In both cases val-
ues of the same feature for an equal number of samples drawn in the
same range by an algorithmic PRNG are given as a reference.

k m p KSˆ104 KSˆ104 Γˆ102 Γˆ102

3 27 1.00 6.7

3.8

0.85 1.16
3 27 0.75 3.5 1.04 1.05
3 27 0.50 3.0 0.76 1.08
3 27 0.25 4.0 0.88 1.09

6 41 1.00 4.8

3.4

1.10 1.22
6 41 0.75 4.3 1.20 1.06
6 41 0.50 3.4 1.07 1.04
6 41 0.25 2.6 1.09 0.98

12 57 1.00 4.1

2.5

1.07 1.04
12 57 0.75 5.3 1.43 1.14
12 57 0.50 4.7 1.15 1.10
12 57 0.25 4.5 1.14 1.09

same value Γ for an equal number of samples generated in the same
range by an algorithmic PRNG.

The fact that chaining allows to prevent any substantial leakage
of information can also be intuitively assessed by looking at the em-
pirical probability distributions in Figure 3 in which profiles do not
change when the average energy of the plaintext changes.

7. CONCLUSION

By introducing chaining of plaintextes before CS-based encryption
we are able to increase robustness with respect to attacks that may
threaten the secure transmission of information between IoT sensor
nodes and gateways.
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