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Abstract—Compressive sensing (CS) is attractive in long-term 

electrocardiography (ECG) telemonitoring to extend life-time for 

resource-limited wireless wearable sensors. Moreover, health 

monitoring has emphasized the need for edge computing to 

process real-time data without the bandwidth costs. However, the 

reconstructed analysis (RA) and the compressed learning (CL) 

frameworks have extremely high memory and computational 

overhead, cost-prohibitive for online usage at resource-

constrained edge device. In this paper, to efficiently analyze the 

received CS measurements with different levels of compression, we 

propose a low-complexity framework of Compressive Analysis in 

Sub-Eigenspace (CA-SE) based on subspace-based representation. 

The dictionary is used for sifting the sub-eigen information from 

the CS measurements online, and it is built by eigenspace learning 

offline. The framework can reduce the memory overhead with a 

single light-weight machine learning model and multiple small 

filter matrices, and the computational complexity with sifting by 

matrix-vector product rather than sparse coding. CA-SE is 

implemented in ECG-based atrial fibrillation detection. The 

memory overhead of CA-SE is 13 and 39 times fewer compared 

with RA and CL, respectively, and the computational complexity 

of CA-SE is 42 and 10 times fewer compared with RA and CL, 

respectively. 

Keywords— Compressive sensing, edge computing, compressive 

analytics, sub-eigenspace, subspace-based representation 

I. INTRODUCTION  

Long-term patient monitoring, especially outside the 

hospital setting, offers the potential to substantially improve 

patient health, quality of life, and outcomes [1]. This potential 

depends on two aspects: 1) the ability to acquire signals that are 

informative with respect to patient stage; and 2) the ability to 

make relevant inference from such signals. Since the 

electrocardiography (ECG) signal recorded from the electrical 

activity of the heart over a period of time has been utilized for 

diagnosis for many diseases, the ECG telemonitoring [2] is 

recognized as a promising technique to realize telemedicine. 

As wireless wearable biomedical sensor nodes are known to 

be resource-limited, it is a crucial problem to reduce the signal 

acquisition on these sensing system and enhance the energy 

efficiency of data transmission. Compressive sensing (CS) is an 

emerging technique combining both sampling and compression 

through random projection [3], which enables sub-Nyquist 

sampling and low-energy data reduction, resulting in life-time 

extension of the sensor node [4] and making the technique 

especially attractive in telemonitoring systems [5]. 

Moreover, health monitoring has emphasized the need for 

edge computing [6], leveraging the benefits of analyzing real-

time data, without the bandwidth costs that come with sending 

the data offsite (i.e., to the cloud or the data center). However, it 

remains a grand challenge to efficiently analyze the received CS 

measurements with different levels of compression online at 

resource-constrained edge. On the one hand, in reconstructed 

analysis (RA) framework as shown in Fig. 1(a), signal 

reconstruction and inference in high dimensional original space 

result in high computational complexity. On the other hand, in 

compressed learning (CL) framework [7], [8] as shown in Fig. 

1(b), multiple machine learning (ML) models in measurement 

domain lead to large memory overhead. 

In this paper, to efficiently analyze the received CS 

measurements, we propose a low-complexity framework of 

Compressive Analysis in Sub-Eigenspace (CA-SE), including 

two stages: I) In off-line stage, the dictionary is constructed 

through eigenspace learning and the ML model is trained in 

sub-eigenspace. II) In on-line stage as shown in Fig. 1(c), based 

on subspace-based representation, a low-complexity sifting 

algorithm is proposed using the pre-trained filter matrix. Our 

specific contributions are as follows: I) CA-SE can dramatically 

reduce the memory overhead with a single light-weight ML 

model and multiple small filter matrices. II) CA-SE can 

significantly reduce the computational cost with sifting by 

matrix-vector product rather than sparse coding. III) This 

framework is implemented in ECG-based atrial fibrillation (AF) 

detection. The total required number of parameters of CA-SE is 

reduced 13.3 and 39.3 times compared with RA and CL, 

respectively. On the other hand, the average required 

multiplications of CA-SE are reduced 42 and 10 times compared 

with RA and CL, respectively.  

 
 

Fig. 1. (a) In RA, signal reconstruction and inference in original space result in 

high computational complexity. (b) In CL, multiple ML models in measurement 
domain lead to large memory overhead. (c) The proposed CA-SE takes care of 

both memory and computational efficiency. 
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II. BACKGROUND 

A. Compressive Sensing [3] 

CS is a novel technique that can be used to acquire signals 

with fewer measurements than Nyquist rate to estimate sparse 

signals, which can be modeled in matrix form as 

𝐱̂ = 𝚽𝐱, (1) 

where 𝐱 ∈ ℝ𝑁  is N-sample signal;  𝐱̂ ∈ ℝ𝑀  is M-compressed 

measurements; and 𝚽 ∈ ℝ𝑀,𝑁  is the CS measurement matrix 

whose entries are independent identically distributed (i.i.d) 

samples. Although sensing can incur very little energy, the 

reconstruction of 𝐱 from 𝐱̂ can be costly.  

B. Related Works 

In reconstructed analysis (RA), original signal is 

reconstructed before processing. The challenge is that both 

sparse signal reconstruction and ML inference in high 

dimensional original space can be extremely energy-intensive 

and time-consuming [9].  

In order to prevent signal reconstruction, in compressed 

learning (CL) [7], [8], the classification is directly performed in 

the measurement domain, and the learnability is remained 

because the distances between the points are preserved by the 

Johnson-Lindenstrauss lemma (JLL) [10]. To support different 

levels of compression, multiple ML models are required and 

thus leads to large memory overhead. 

III. PROPOSED COMPRESSIVE ANALYSIS IN SUB-EIGENSPACE 

(CA-SE) FRAMEWORK 

To take care of both memory and computational efficiency, 

the CA-SE framework is proposed as shown in Fig. 2. In off-

line stage, we aim to construct the dictionary and train a single 

ML model in sub-eigenspace. In on-line stage, based on 

subspace-based representation for signal, we aim to develop a 

low-complexity sifting algorithm using the pre-trained filter 

matrix. 

A. Learning in Sub-Eigenspace 

Consider a dataset of 𝑛 vectors 𝐗 = [𝐱1 𝐱2  ⋯ 𝐱𝑛], 𝐱𝑖 ∈ ℝ𝑁.  

We aim to find a reduced space such that the projected vectors 

have 1) maximum variance (minimum projection error 

equivalently), and 2) learnable features (classification 

capability). Hence, we find the basis preserving the information 

of the signal for reconstruction and classification through 

learning the eigenspace of the dataset.  

The eigenspace can be derived by computing the covariance 

matrix 𝐒 ∈ ℝ𝑁,𝑁  and solving the eigenvalue decomposition 

problem as follows, 

𝐒 =
1

𝑛
(𝐗 − 𝐱̅𝐡)(𝐗 − 𝐱̅𝐡)𝑇, (2) 

where 𝐱̅ ∈ ℝ𝑁 is the mean vector from each row of 𝐗 and 𝐡 is 

a 1 × 𝑛 vector of all 1s.  

𝐒𝐖 = 𝐖𝚲, (3) 

where 𝚲 ∈ ℝ𝑁,𝑁  is a diagonal matrix with eigenvalue in 

descending order, and 𝐖 ∈ ℝ𝑁,𝑁  is the corresponding 

eigenvector matrix of 𝐒.  

Based on 𝐖 , the columns in dictionary 𝚿𝑬 ∈ ℝ𝑁,𝑘𝐸
 are 

formed by the eigenvectors corresponding to the 𝑘𝐸  largest 

eigenvalues for signal reconstruction as follows, 

𝚿𝑬 = 𝐖(: ,1: 𝑘𝐸), (4) 

where 𝑘𝐸 represents the intrinsic dimension of the signal, also 

the dimension of the eigenspace, decided by scree-plot. After 

that, the sub-eigenspace sub-dictionary 𝚿𝑺𝑬 ∈ ℝ𝑁,𝑘𝑆𝐸
 is further 

formed with the first  𝑘𝑆𝐸 columns in  𝚿𝑬 for classification as 

follows, 

𝚿𝑺𝑬 = 𝚿𝑬(: ,1: 𝑘𝑆𝐸), (5) 

where 𝑘𝑆𝐸 represents the dimension of sub-eigenspace, decided 

by classification performance. Next, we apply the matrix 𝚿𝑺𝑬 

to project the original raw data 𝐱 ∈ ℝ𝑁  to the sub-eigen 

information 𝐞𝑺𝑬 ∈ ℝ𝑘𝑆𝐸 , and we call the projected space the 

sub-eigenspace. 

𝐞𝑺𝑬 = 𝚿𝑺𝑬
𝑇(𝐱 − 𝐱̅). (6) 

The sub-eigen information 𝐞𝑺𝑬 is first extracted with the sub-

eigenspace sub-dictionary 𝚿𝑺𝑬 in off-line stage, and we further 

implement ML model training in sub-eigenspace. 

B. Subspace-based Signal Representation with Dictionary 𝜳𝑬 

After eigenspace learning, subspace-based representation is 

proposed. The reconstruction error is small enough if the 

dimension 𝑘𝐸 chose is large enough. On the other hand, 𝚿𝑬 is 

orthonormal. Therefore, signal can be represented by the 

information in low dimensional eigenspace with the basis 𝚿𝑬. 

Furthermore, the data in eigenspace can be represented by the 

information from two subspaces, the sub-eigenspace and the 

complementary eigenspace corresponding to the remaining 𝑘𝐶𝐸 

eigenvalues (𝑘𝐶𝐸 = 𝑘𝐸 − 𝑘𝑆𝐸 ). Therefore, the signal can be 

represented as follows, 

𝐱̃ ≅ 𝚿𝑬𝛂 = [𝚿𝑺𝑬 𝚿𝑪𝑬] [
𝐬𝑺𝑬

𝐬𝑪𝑬
], (7) 

where 𝐱̃ = 𝐱 − 𝐱̅  is the centered data. Equation (7) is called 

subspace-based signal representation. 𝚿𝑬 is composed of 𝚿𝑺𝑬 

and complementary eigenspace sub-dictionary 𝚿𝑪𝑬 ∈ ℝ𝑁,𝑘𝐶𝐸
. 

 
Fig. 2. The proposed Compressive Analysis in Sub-Eigenspace (CA-SE) 

framework. 
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𝐬𝑺𝑬 ∈ ℝ𝑘𝑆𝐸  and 𝐬𝑪𝑬 ∈ ℝ𝑘𝐶𝐸  are the coefficients corresponding 

to 𝚿𝑺𝑬  and 𝚿𝑪𝑬 , representing the recovered sub-eigen 

information and the recovered complementary information. 

The CS can be modeled in matrix form in (1). Combing (1) 

with (7), we can derive: 

𝐱̃̂ ≅ 𝚽𝚿𝑬𝛂 = 𝚯𝑬𝛂, 

𝚯𝑬 = [𝚯𝑺𝑬 𝚯𝑪𝑬], 𝛂 = [𝐬𝑺𝑬 𝐬𝑪𝑬]𝑇, 
(8) 

where 𝐱̃̂ = 𝐱̂ − 𝚽𝐱̅ is the centered CS measurements, and 𝚯𝑬 ∈
ℝ𝑀,𝑘𝐸

  is composed of  𝚯𝑺𝑬 ∈ ℝ𝑀,𝑘𝑆𝐸
 (𝚯𝑺𝑬 = 𝚽𝚿𝑺𝑬)  and 

𝚯𝑪𝑬 ∈ ℝ𝑀,𝑘𝐶𝐸
 (𝚯𝑪𝑬 = 𝚽𝚿𝑪𝑬) . Therefore, the centered CS 

measurements 𝐱̃̂  can be represented with the measurement 

matrix 𝚽 and the dictionary 𝚿𝑬, as shown in Fig. 3. 

C. Filtering Matrix 𝑭 for Recovered Sub-Eigen Information 

Based on subspace-based representation, we aim to develop 

a low-complexity sifting algorithm, which sifts the recovered 

sub-eigen information from the centered CS measurements with 

different 𝐶𝑟, using the pre-trained filter matrix. To solve for 𝛂 

in (8), we have to solve the following optimization problem: 

min
𝛂

‖𝐱̃̂ − 𝚯𝑬𝛂‖
2

2
. (9) 

The problem can be solved with a least-square (LS) approach. 

We thus have the following solution: 

𝛂 = 𝚯𝑬
†𝐱̃̂, (10) 

where 𝚯𝑬
† is the Moore-Penrose inverse of 𝚯𝑬. Furthermore, 

according to [11], the particular formulate for the Moore-

Penrose inverse of a columnwise partitioned matrix is: 

𝚯𝑬
† = [𝚯𝑺𝑬 𝚯𝑪𝑬]† = [(𝐏𝚯𝑪𝑬

⊥ 𝚯𝑺𝑬)† (𝐏𝚯𝑺𝑬

⊥ 𝚯𝑪𝑬)†], (11) 

where the orthogonal projectors specified as: 

𝐏𝚯𝑪𝑬

⊥ =  𝐈𝑀 − 𝚯𝑪𝑬𝚯𝑪𝑬
†, 

and 𝐏𝚯𝑺𝑬

⊥ =  𝐈𝑀 − 𝚯𝑺𝑬𝚯𝑺𝑬
†. 

(12) 

Combing (8), (10), and (11), by comparing the coefficients in 

𝛂, 

𝛂 = [(𝐏𝚯𝑪𝑬

⊥ 𝚯𝑺𝑬)†𝐱̃̂ (𝐏𝚯𝑺𝑬

⊥ 𝚯𝑪𝑬)† 𝐱̃̂] = [𝐬𝑺𝑬 𝐬𝑪𝑬]𝑇, (13) 

we can derive 𝐬𝑺𝑬 as follows: 

𝐬𝑺𝑬 = (𝐏𝚯𝑪𝑬

⊥ 𝚯𝑺𝑬)†𝐱̃̂ = 𝐅𝐱̃̂, (14) 

where 𝐅 ∈ ℝ𝑘𝑆𝐸,𝑀 (𝐅 = (𝐏𝚯𝑪𝑬

⊥ 𝚯𝑺𝑬)†) is the filter matrix which 

sifts the recovered sub-eigen information 𝐬𝑺𝑬 from the centered 

CS measurement 𝐱̃̂. The recovered sub-eigen information 𝐬𝑺𝑬 is 

first sifted with the filter matrix 𝐅  in on-line stage, and we 

further implement ML model inference in sub-eigenspace. 

IV. NUMERICAL EXPERIMENTS AND COMPLEXITY ANALYSIS  

The learning performance, memory and computational 

overhead in on-line stage are compared between this work (CA-

SE), RA, and CL. We use a case study of AF [12] detection to 

validate the benefits of our proposed algorithm. The simulation 

setup is in TABLE I. The data were recorded from the intensive 

care unit (ICU) of stroke in National Taiwan University 

Hospital (NTUH), and visually checked and labeled by doctors. 

ECG samples are applied random projection to obtain the CS 

measurements with compression ratio 𝐶𝑟 = 0.7 − 0.2 . Then, 

the CS measurements are analyzed in different frameworks. 

Model selection for SVM (by LIBSVM [13]) is performed by 

cross-validated grid-search.  

A. Size Determination of Dictionary 𝜳𝑬 

The dictionary is learnt offline by eigenspace learning. To 

ensure the dictionary spans the vector space the signals lie 

within, the dimension of eigenspace 𝑘𝐸  is set to fulfill the 

following criteria: 

∑ 𝜆𝑖
𝑖=𝑘𝐸
𝑖=1

∑ 𝜆𝑖
𝑖=𝑁
𝑖=1

> 𝛽, (15) 

where 𝜆𝑖  is the eigenvalue of the 𝑖 th principal component, 

which represents the data variance. The percentage of the 

accumulated eigenvalue needs to be greater than 𝛽 = 0.995 as 

shown in Fig. 4(a). Therefore, we choose  𝑘𝐸 = 83 for 𝚿𝐄. The 

dimension of sub-eigenspace 𝑘𝑆𝐸  is decided by the 

classification performance as depicted in Fig. 4(b), and is set 

35  for highest learning accuracy. Therefore, the size of 

dictionary 𝚿𝑬 is: 𝑘𝐸 = 83, 𝑘𝑆𝐸 = 35, 𝑘𝐶𝐸 = 48. 

TABLE I 

EXPERIMENTAL SETTINGS. 

Data Parameters 

Source NTUH ICU ECG data 

Sampling Frequency 512 Hz 

Input Dimension (N) 512 (1 sec. ECG) 

Number of Classes 2 (Normal/AF) 

Number of training / inference data 2500 / 1000 each class 

CS Sampling Matrix 

Type Random Bernoulli 

Compression Ratio (𝐶𝑟) [0.7 to 0.2] 

Machine Learning Model 

Type RBF Kernel SVM by LIBLVM 

Cost (𝐶) Search Range [1, 10, 100] 

Gamma (γ) Search Range [10−3 to 102] 

Cross-validation 5-fold 

Simulation 

Simulator PYTHON 

Trails 100 

 

 

Fig. 3. Centered CS measurements 𝐱̃̂ can be represented with the measurement 

matrix 𝚽 and the dictionary 𝚿𝑬. 
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B. Learning Performance Evaluation 

Fig. 5 shows the average classification accuracy with 

different levels of compression (𝐶𝑟 = 0.7 − 0.2). The proposed 

CA-SE framework has the highest accuracy compared with 

both RA and CL. This improvement benefits from the noise 

mitigation in sub-eigenspace. 

C. Analysis of Memory and Computational Overhead 

In this subsection, we seek to compare the overhead in 

analyzing the CS measurements with different 𝐶𝑟  in on-line 

stage. TABLE II presents the memory requirement and the 

computational complexity of different frameworks. Under the 

experimental settings, TABLE III shows the total required 

number of parameters and the average required multiplications 

in different 𝐶𝑟. The parameter 𝑁 is the original dimension; 𝑀 is 

the measurement length; 𝑘𝑆𝐸  is the dimension of sub-

eigenspace; 𝑛𝑆𝑉 is the number of support vectors in SVM; and 

𝐾 is the signal sparsity in noiseless scenario. 

In RA, a single big reconstruction matrix (𝑀𝑚𝑎𝑥𝑁 = 358 ×
512 ≅ 0.2M) multiplied by the measurement matrix and the 

sparsifying matrix is required, where 𝑀𝑚𝑎𝑥  is the measurement 

length in maximum 𝐶𝑟 = 0.7. Also, a single heavyweight ML 

model in original domain (𝑛𝑆𝑉𝑁 = 3515 × 512 ≅ 1.8M ) is 

required. In CL, multiple ML models in measurement domain 

(∑ (𝑛𝑆𝑉𝑀)𝐶𝑟
≅ 5.9M) are required. Furthermore, 𝑛𝑆𝑉 increases 

(i.e., 𝑛𝑆𝑉 = 4300  in 𝐶𝑟 = 0.5)  because of learnability 

degradation in measurement domain. In the proposed CA-SE, 

multiple small filter matrices 𝐅  ( ∑ (𝑀𝑘𝑆𝐸)𝐶𝑟
≅ 0.05M ) are 

required. Also, a single lightweight ML model in sub-

eigenspace ( 𝑛𝑆𝑉𝑘𝑆𝐸 = 2812 × 35 ≅ 0.1M ) is required. In 

addition, 𝑛𝑆𝑉 decreases due to learnability improvement in sub-

eigenspace with noise reduction. Therefore, the total required 

number of parameters of CA-SE (0.15M) is 13.3 and 39.3 times 

fewer compared with RA (2M) and CL (5.9M), respectively. 

Most works in RA adopted orthogonal matching pursuit 

(OMP) to realize the CS reconstruction engine [14] because 

OMP has less complexity and is more feasible for 

implementation compared with convex optimization based 

sparse coding algorithm. The complexity of OMP is at least 

𝒪(𝑀𝑁𝐾) [15]; therefore, the average required multiplications 

are ∑ 𝒪(𝑀𝑁𝐾)𝐶𝑟
6⁄ = ∑ 𝑀 × 512 × 20𝐶𝑟

6⁄ ≅ 2.4M . On the 

contrary, the sifting algorithm in the proposed CA-SE only 

involves matrix-vector product with the filter matrix 𝐅 ; 

therefore, the average required multiplications are 

∑ 𝒪(𝑀𝑘𝑆𝐸)𝐶𝑟
6⁄ = ∑ 𝑀 × 35𝐶𝑟

6⁄ ≅ 8K . Note that the filter 

matrix 𝐅 can be precomputed offline referring to (14). On the 

other hand, the average required multiplications for SVM in RA, 

CL, and CA-SE are 𝒪(𝑛𝑆𝑉𝑁) = 3515 × 512 ≅ 1.8M , 

∑ 𝒪(𝑛𝑆𝑉𝑀)𝐶𝑟
6⁄ ≅ 1M, and 𝒪(𝑛𝑆𝑉𝑘𝑆𝐸) = 2812 × 35 ≅ 0.1M, 

repectively. Therefore, the average required multiplications of 

CA-SE (0.1M) is 42 and 10 times fewer compared with RA 

(4.2M) and CL (1M), respectively. 

V. CONCLUSIONS  

In this work, we propose a novel compressive analytics in 

sub-eigenspace framework based on CS. The proposed CA-SE 

outperforms RA, CL in both memory overhead and 

computational complexity. The framework is implemented in 

ECG-based AF detection. The total required number of 

parameters of CA-SE is reduced 13.3 and 39.3 times compared 

with RA and CL, respectively. On the other hand, the average 

required multiplications of CA-SE are reduced 42 and 10 times 

compared with RA and CL, respectively. 
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TABLE II 

MEMORY AND COMPUTATIONAL OVERHEAD OF DIFFERENT FRAMEWORKS. 

Framework 
Memory  

Requirement 

Computational 

Complexity 

RA 𝑀𝑚𝑎𝑥𝑁 + 𝑛𝑆𝑉𝑁 𝑀𝑁𝐾 + 𝑛𝑆𝑉𝑁 

CL ∑(𝑛𝑆𝑉𝑀)

𝐶𝑟

 𝑛𝑆𝑉𝑀 

Proposed 

CA-SE 
∑(𝑀𝑘𝑆𝐸)

𝐶𝑟

+ 𝑛𝑆𝑉𝑘𝑆𝐸 𝑀𝑘𝑆𝐸 + 𝑛𝑆𝑉𝑘𝑆𝐸 

 

TABLE III 

REQUIRED # PARAMETERS AND MULTIPLICATIONS. 

Framework 
Total Required  

# Parameters 

Average Required 

Multiplications 

RA 2M 4.2M 

CL 5.9M 1M 

CA-SE 0.15M 0.1M 

 

 

Fig. 4. ECG signal from ICU dataset: (a) Accumulated eigenvalues for kE ∈
[50,100]. (b) Classification accuracy for kSE ∈ [5,50]. 

 

Fig. 5. Classification accuracy for compression ratio ∈ [0.7,0.2] . 
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