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ABSTRACT

Matrix completion with rating data and auxiliary informa-
tion for users and items is a challenging task in recommenda-
tion systems. In this paper, we propose an end-to-end archi-
tecture named Attention-based Graph Convolutional Network
(AGCN) to embed both rating data and auxiliary information
in a unified space, and subsequently learn low-rank dense rep-
resentations via graph convolutional networks and attention
layers. Compared to previous work, AGCN reduces compu-
tational complexity with Chebyshev polynomial graph filters.
The introduced attention layer, which encourages weighing
the neighbor information to learn more expressive structural
graph representations, can improve the prediction accuracy,
and lead to faster and more stable convergence. Experimental
results show that our model can perform better and converge
faster than current state-of-the-art methods on the real-world
MovieLens and Flixster datasets.

Index Terms— Graph Signal Processing, Attention,
Graph Convolutional Network, Recommendation System

1. INTRODUCTION

Matrix Factorization (MF) is the one of the most often-used
techniques for recommendation systems by approximating
the observed sparse rating matrix with two low-rank dense
matrices that correspond to latent features for users and items,
respectively, as shown in Fig.1. However, besides rating ma-
trix, side information for users and items, e.g., relationship
among users from social networks, can also be involved to
further explore behavior patterns, leading to more precise
recommendations [1–4]. Recent works attempt to directly
capture structural information among users/items/ratings
by constructing the rating matrix and side information as
graphs [5, 6].

Graph convolutional networks (GCNs) are proposed to
extend convolutional neural network to directly operate on
the spectral or spatial domain of graphs for effective repre-
sentation learning [7–9]. Subsequent works applying GCNs
for recommendation systems demonstrate its superior perfor-
mance over traditional MF-based methods. However, they are
usually shallow architectures and still rely on additional com-
putational units such as recurrent networks [5–7], leaving the

R
ijr ),( jiij vufr 

jv

TV
U

iu
U
sers

Items

Fig. 1. The MF representations for score-based recommen-
dation systems. The rows of U and the columns of VT can
be viewed as latent feature representations of users and items,
their inner product provides an prediction for ratings.

design of lightweight and deeper frameworks as future work.
Moreover, the propagation layers of existing GCNs adopt a
static and non-adaptive mechanism, which fails to capture the
relevance between different neighbors.

With a long history in neuroscience, attention mechanism
[10] has been used in plenty of machine learning models and
tasks lately to improve performance [11–13]. Essentially, at-
tention is a technique that learns a distribution over the avail-
able input and then zooms in or out on it accordingly in order
to reach a more reliable decision making process. In graph
signal processing fields, attention can be applied to learn the
relevance among nodes to facilitate information propagation
and learn structural features for graphs [14, 15] .

Motivated by these issues and advancements, in this pa-
per, we propose a novel attention-based graph convolutional
network (AGCN) model which learns expressive user and
item features for matrix completion. In AGCN, both rating
data and complementary side information are embedded to
the same space and subsequently processed via polynomial
Chebyshev graph filters to deal with heterogeneous infor-
mation sources [8]. To better explore the underlying graph
structure, especially for extremely sparse graphs, we intro-
duce an attention layer over GCNs to emphasize on important
neighbors for information update. Compared to previous
GCN-based work, AGCN is applicable for much deeper ar-
chitectures without complicated neural network frameworks.
Experimental results on two real-world datasets show that
AGCN can achieve better performance and converge much
faster and more stable than state-of-the-art models.
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2. PROBLEM FORMULATION

2.1. Regularized Matrix Factorization

Given a collective interaction rating matrix R ∈ RNu×Nv ,
where Nu and Nv denote the number of users and items re-
spectively, the element rij denotes the ratings given by user
i to item j. The observed elements constitute a small subset
Ω of the rating matrix R. The side information, such as user
demographic information and item attributes or other content
information, can be encoded as raw feature vectors pi ∈ RP
for user i and qj ∈ RQ for item j. MF methods aim to learn
latent feature representations for users and items and recon-
struct the whole matrix by the product of corresponding fea-
ture matrices, namely R ≈ UVT where U ∈ RNu×K and
V ∈ RNv×K with K � Nu, Nv denoting the dimension of
latent feature vector.

To tackle with this problem, a well-posed method is low
rank assumption with a tight convex relaxation [16], which is
equivalent to minimizing the following loss function:

J (U ,V ) =
∥∥∥Ω ◦ (R−UVT )

∥∥∥2

F
+ λ

(
‖U‖2? + ‖V ‖2?

)
, (1)

where the first term is the reconstruction error for observed
data with Ω ◦ (·) is the binary projection operator that only
counts observed entries of the matrix which lie in the set Ω,
and ‖·‖F denotes the Frobenius norm. And the second term
is the regularization term with different nuclear norm ‖·‖2? for
different model [16], and λ denotes the regularization factor.

2.2. Graph Embedding

How to embed recommendation systems as graphs varies for
different models. The graphs mainly fall into two categories:
user-item bipartite graph or user-item multi-graph as shown
in Fig.2. For user-item bipartite graph, users and items are
denoted as nodes while entries in rating matrix are considered
as edges [8] [17] [6]. Since there are no edges between any
user node pairs or item node pairs, the recommendation is of
bipartite structure and the reconstruction task can be cast as a
link prediction problem.

In contrast, geometric structure within matrix rows and
columns exist in user-item multi-graph, resulting from com-
plementary graphs, e.g., graphs from users’ social net-
work data or item relationship data [18] [5] [16]. The
side information can be encoded as undirected weighted
row graph Gr = ({u1, ..., uNu

}, Er,Wr) and column graph
Gc = ({v1, ..., vNv

}, Ec,Wc). Take Gr as an example,
{u1, ..., uNu

} is the set of user nodes, Eu is the set of edges,
and each entry wrij = sim(pi,pj) measures the similarity be-
tween node ui and uj , where sim(·) is a function to compute
the similarity. In our experiments, this row graph comes from
the demographic information for users. The column graph Gr
for items is defined in the same fashion.
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Fig. 2. Example of user-item multi-graph. Take user graph
as example, Nu × Nv-dimension rating matrix can be em-
bedded as Nu user nodes and each user node associates with
Nv-dimension sparse graph signal as its rating behavior. Aux-
iliary content information is used to build edges among user
nodes. A K-dimension dense feature vector is learned for
each user node via AGCN. The column graph is defined in
similar manner.

The rating data is represented as vectorized graph sig-
nals for each node, i.e., the graph signal ri,: associated with
user node ui is i-th row of rating matrix R, while for the
item node vj is j-th column r:,j . Matrix factorization prob-
lem following this graph embedding mechanism can be cast
as mapping high-dimensional sparse graph signals to low-
dimensional dense features.

2.3. Objective Function

In graph signal processing (GSP), the normalized graph
Laplacian is defined as a symmetric semi-definite matrix
L = I − D−1/2WD−1/2, where D = diag

(∑
i 6=j wij

)
is

the degree matrix and I is the identity matrix. The Lapla-
cian matrices for row and column graph are denoted as Lr
and Lc. Since L is symmetric, it can be decomposed as
L = ΦΛΦT and has a complete set of orthonormal eigen-
vectors, denoted as Φ = (φ1, φ2, ..., φn), and the diagonal
matrix of corresponding eigenvalues Λ = (λ1, λ2, ..., λn).
The graph smoothness is defined as the graph total varia-
tion [19] of all graph signals, i.e., the smoothness is ‖U‖2Gr =

trace(UTLrU) for row graph and ‖V‖2Gc = trace(VLcVT )
for column graph. Under these settings, the loss function in
(1) can be rewritten as

J (U,V) =
∥∥∥Ω ◦ (R−UVT )

∥∥∥2

F
+ λ

(
‖U‖2Gr

+ ‖V‖2Gc

)
(2)
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3. METHODOLOGY

3.1. Graph Convolution

The AGCN model consists of two main components: the
GCN block and the attention layer. It takes as input the user-
item multi-graph and outputs two low-rank dense matrices
U,V for completion of R, as shown in Fig.3 (a).

Here we mathematically define the convolution operations
for aM -layer GCN. Considering a normalized polynomial fil-
ters with Chebyshev coefficient proposed in [9, 20], the con-
volution at the m-th layer, which receives input as H̃(m) and
outputs H(m+1), is defined as

H(m+1) = σ(H̃(m)W
(m)
θ (L)), (3)

where σ is the activation function (ReLU), and W
(m)
θ (L) ={

w
(m)
θij

}
is the weight matrix defined as

w
(m)
θij

=

P−1∑
p=0

θ
(m)
ij,pTp(L̂), (4)

where θij,p is the polynomial filter coefficients to be learned,
L̂ = 2L/λmax − I whose eigenvalues are in the interval
[−1, 1], and Tp(·) is the recursively generated Chebyshev
polynomial. P denotes the order of the polynomial, which
means the Laplacian is a local operator with P -hop spatial
neighborhood. For row graph, H̃(0) = R and Laplacian ma-
trix L = Lr, for column graph, H̃(0) = RT and L = Lc.

3.2. Attention Mechanism

Each graph convolutional layer is followed by an attention
layer defined as

H̃(m) = A(m)H(m) (5)

where the attention matrix A(m) is also a function of the input
signal H(m). More specifically, the output weighted feature
vector of node j is

h̃
(m)
j =

∑
i∈Nj

α
(m)
ij h

(m)
i (6)

where Nj denotes the neighborhood of node j including it-
self, and the attention coefficient is computed as

α
(m)
ij =

exp
(
β(m) cos

(
h
(m)
i ,h

(m)
j

))
∑
i′∈Nj

exp
(
β(m) cos

(
h
(m)
i′ ,h

(m)
j

)) (7)

with cos (a,b) = aTb
‖a‖‖b‖ , and β(m) is the scalar parameters

for the attention layer. Essentially, the attention score α(m)
ij

captures how relevant node i is to node j. By putting more at-
tention on important neighbors, the node representations can
be updated more efficiently and hence leading to faster con-
vergence.

3.3. Model Justification

Convergence. The AGCN model can be interpreted as a
graph-based version of the Weisfeiler-Lehman algorithm
[21]. For all nodes i ∈ G, the 1-D Weisfeiler-Lehman al-
gorithm first gets node features {xj} of neighboring nodes
{j ∈ Ni}, and then updates them as xi ← hash(

∑
j xj),

where hash(·) is an injective hash function. Repeat multi-
ple steps or until convergence. In our AGCN model, the
layer-wise propagation rule can be interpreted as a differ-
entiable and parameterized variant of the hash function as
h
(m+1)
j = σ(

∑
i∈Nj

α
(m)
ij W(m)h

(m)
i ). This update rule

becomes stable in practice when choosing an appropriate
non-linear activation function (e.g., ReLU) and initializing
the random weight matrix orthogonally [22]. The pure GCN
model is a special case of our model when attention score
α
(t)
ij = (|Ni| |Nj |)−1/2.

Model complexity. The proposed attention mechanism over
neighbors in (7) learns which neighbors are more relevant and
weighs their contributions accordingly. Similar to [13,23], we
adopt a very simple attention formulation with only one pa-
rameter for each layer. It is critical to reduce model complex-
ity for successfully train in highly sparse datasets. Complex
attention mechanisms, such as self-attention [15] or multi-
head attention [14], are more suitable for rich information
datasets task but not recommendation system, as they might
resulting in unstable training and lower accuracy.

4. EXPERIMENT

4.1. Experimental Setup

We evaluate our model on two standard movie recommenda-
tion benchmark datasets: the MovieLens-100K and Flixster
datasets [5]. The statistics of the sparse rating matrices are
shown in Table.1. The side information for MovieLens-
100K is user demographics (age, gender and occupation)
and item genres. Flixster provides relationship information
among users and among items as well. We randomly split the
datasets with 70% for training, 20% for validation and 10%
for test.

We stack M = 6 graph convolution and attention layers.
The dimension of latent feature vector is set to K = 32 and
the order of Chebyshev polynomials is P = 5. Adam [24] is
used for optimization with learning rate η = 0.001. Through
cross-validation, we set the regularization coefficient as λ =
0.001. All models are implemented with TensorFlow [25].

4.2. Result Analysis

Performance Evaluation. We compare AGCN with state-of-
the-art methods including GRALS [18], AFM [15], sRGCNN
[5] and GC-MC [6]. The root-mean-square errors (RMSE)
are reported in Table 2. First of all, we can observe that
AGCN outperforms all baselines on both datasets. The
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Fig. 3. (a). AGCN architecture for matrix factorization problem. We have two co-trained GCN+Attention blocks for users and
items, respectively. (b). The RMSE of AGCN, GC-MC and sRGCNN during training. We zoom in on the first 500 iterations to
justify the convergence speed. (d). Comparison of RMSE for AGCN and GCNs (without attention).

Table 1. Statistics of the rating matrices.
Dataset #user #item #rating sparsity

MovieLens-100K 943 1682 100,000 6.3%
Flixster 3000 3000 26173 0.29%

Table 2. RMSE on MovieLens-100K and Flixster datasets.
Method MovieLens-100K Flixster
GRALS( [18]) 0.945 1.245
sRGCNN( [5]) 0.929 0.926
AFM( [15]) 0.913 0.922
GC-MC( [6]) 0.905 0.917
AGCN(ours) 0.898 0.901

RMSE of AGCN is much lower than traditional graph-based
methods, i.e., it is 4.7% and 34.4% lower than GRALS for
MovieLens-100K and Flixster, respectively. Compared to
GCN-based methods, AGCN reduces the RMSE by 0.7%-
3.1% and 0.6%-2.5% for the two tasks. We speculate that the
introduced attention layer could assist GCNs to concentrate
more on important node information, enabling learning more
expressive representations. This is demonstrated in Fig.3.(c),
where AGCN converges to a much lower RMSE than GCN-
based models. It is also, to some extent, consistent with the
observed lower RMSE achieved by AFM than by GRALS,
where both of them are graph-based methods without GCNs
while AFM employs additional attention mechanism.
Convergence. Here we justify the convergence speed and
stability of our model. As Fig.3.(b) shows, besides the lower
RMSE, AGCN also converges much faster than GC-MC and
sRGCNN, especially in the first hundreds of iterations. We
shall attribute this observation to the attention layers, which
always motivate the GCNs to update the node representations
in a right manner. We also show how the attention layer can
help stabilize the convergence. As shown in Fig.3(c), the
RMSE experiences much less oscillations and hence attains

Table 3. Computation and model complexity.
Method Computation Model
GRALS( [18]) O(Nu +Nv) O(Nu +Nv)
sRGCNN( [5]) O(Nu +Nv) O(1)
AFM( [15]) O(NuNv) O(NuNv)
GC-MC( [6]) O(Nu +Nv) O(Nu +Nv)
AGCN(ours) O(Nu +Nv) O(Nu +Nv)

a lower variance by adding attention layers to the GCNs.
Computational Efficiency. Another key advantage of of our
model is the low computation and model complexity. As Ta-
ble 2 shows, AFM scales quadratically as O(NuNv), while
the rest including our model scale linearly as O(Nu + Nv).
Moreover, the model parameters and memory storage re-
quired by attention in AFM are both quadratic to the number
of non-zero features, i.e., (O((nnz(R))

2
)) where nnz(·)

counts the non-zero entries. In contrast, our attention strategy
only introduces K2 � (nnz(R))

2 for memory storage and
one scalar parameter to learn in each layer. Along with the
better performance from AGCN, we can conclude that our
model is both simple and effective.

5. CONCLUSION

We propose an attention-based graph neural network which
integrates GCNs and attention mechanisms. The proposed
AGCN can learn low-dimension discriminative user/item la-
tent representations and perform better than current state-of-
the-art methods in standard datasets. Compared with other
GCN models, the improvement is due to the utilization of ad-
ditional attention layers. Compared with attention-based col-
laborative filtering models, our attention layer is much sim-
pler but still effective enough. Future work includes design-
ing more powerful GCNs along with attention mechanisms to
improve prediction accuracy and computational efficiency.
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