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ABSTRACT

Sliced recurrent neural networks (SRNNs) are the state-of-
the-art efficient solution for long text analysis tasks; however,
their slicing operations inevitably result in long-term depen-
dency loss in lower-level networks and thus limit their ac-
curacy. Therefore, we propose a breaking point information
enrichment mechanism to strengthen dependencies between
sliced subsequences without hindering parallelization. Then,
the resulting BPIE-SRNN model is further extended to a bidi-
rectional model, BPIE-BiSRNN, to utilize the dependency in-
formation in not only the previous but also the following con-
texts. Experiments on four large public real-world datasets
demonstrate that the BPIE-SRNN and BPIE-BiSRNN mod-
els always achieve a much better accuracy than SRNNs and
BiSRNNs, while maintaining a superior training efficiency.

Index Terms— Long Text Analysis, RNN, SRNN

1. INTRODUCTION

Recurrent neural networks (RNNs) have been witnessed to
achieve a superior performance in many natural language pro-
cessing (NLP) tasks, such as machine translation [1], question
answering [2, 3], and natural language inference [4]. The suc-
cess of applying RNNs in NLP tasks mainly comes from their
capability to pass the information in one step of the networks
to the next, making it possible to process each word based on
the textual information of previous words. However, RNNs
suffer from the vanishing (and exploding) gradient problem,
which makes it difficult to discover long-distance dependen-
cies between words [5]. Long short-term memory networks
(LSTMs) [6, 7] and gated recurrent units (GRUs) [8] are pro-
posed to remedy this problem using a gate mechanism.

However, traditional RNNs, LSTMs, and GRUs all suf-
fer from a training efficiency problem in long text analysis
tasks: with increasing text length, the training time of these
models also increases dramatically, which greatly limits their
application in real-world scenarios. One existing solution is

?Co-first authors, contributed to this work equally.
†Corresponding authors.

to skip some information, simulating a human’s daily reading
habits, such as fixation and saccades [9, 10]; however, this
will result in the loss of textual information. Another solution
is to introduce convolutional components into the recurrent
structure [11, 12, 13]; but the convolutional components make
it difficult to fully utilize the order information of sequential
data. Thus, their performances are usually unsatisfactory.

Sliced recurrent neural networks (SRNNs) [14] are the
state-of-the-art efficient solution for long text analysis tasks,
where input sequences are sliced into multiple subsequences,
and GRUs process these subsequences in a parallelized way.
Although SRNNs can still discover dependencies between
subsequences in higher levels of their networks, the slicing
operations still inevitably weaken the models’ capability in
capturing the long-term dependencies in lower levels.

Consequently, if more dependencies between subse-
quences can be maintained in lower levels without hindering
parallelization, it will not only make lower-level networks
capable to get more dependency information, but also help
higher-level networks to get more accurate long-term depen-
dencies, which will consequently enhance the models’ perfor-
mance. One natural choice is to use the last few words of the
previous subsequence to calculate a more accurate starting
state for a subsequence, instead of using a fixed or random
starting state. Furthermore, adding previous words to a given
subsequence will increase the probability of containing sen-
tence separators in this subsequence; since separators contain
dependency information between sentences, they will further
improve the representation modeling of given subsequences.

Motivated by this, we first propose a breaking point in-
formation enrichment (BPIE) mechanism, which strengthens
the semantic dependencies between sliced subsequences in
SRNNs by adding to each subsequence the last few words
of the previous subsequence. The resulting model is called
BPIE-SRNN. In addition, since people can better understand
a given sentence by considering not only the information in
previous sentences but also that in following sentences, we
further propose to extend the BPIE-SRNN model to a bidi-
recitonal model, called BPIE-BiSRNN, to use the dependency
information in not only the previous but also the following
contexts. In BPIE-BiSRNNs, subsequences are processed
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Fig. 1. Procedure of BPIE-BiSRNNs with subsequence length z = 4, hyperparameter m = 1, and hidden states of GRU h = 5

both forward and backward in GRUs, and the last (resp., first)
few words of the previous (resp., next) subsequence are added
to given subsequences in forward (resp., backward) processes
for information enrichment. Extensive experimental studies
on four large public real-world datasets demonstrate the su-
perior performance of BPIE-SRNNs and BPIE-BiSRNNs on
long text analysis tasks: BPIE-SRNNs and BPIE-BiSRNNs
always achieve a much better accuracy than SRNNs and
BiSRNNs, while maintaining a superior training efficiency.

2. BPIE-BISRNN

In this section, we introduce the details of the BPIE-BiSRNN
model; BPIE-SRNNs are a simplified version of BPIE-
BiSRNNs, where all backward operations are removed. The
overall working of BPIE-BiSRNNs is shown as pseudocode
in Algorithm 1 and also depicted in Fig. 1.

In BPIE-BiSRNNs, given a long text sequence S (after
padding) consisting ofLwords (i.e., S = [x0, x1, . . . , xL−1]),
we first slice S into n subsequences S = [s0, s1, . . . , sn−1]
with an equal length z = L/n (line 1 in Algorithm 1).

Then, for each subsequence sk, we add the last m words
of the previous subsequence sk−1 to the front of sk, resulting
in an information-enriched subsequence for the forward pro-
cesses, denoted sk forward; similarly, sk backward is obtained
for the backward processes by adding the first m words of the
next subsequence sk+1 (lines 4–5). Formally,

sk forward = Concat([sk−1[−m :], sk]), (1)
sk backward = Concat([sk, sk+1[: m]]), (2)

where zero-padded subsequences s−1 and sn are created for
the boundary cases, when k = 0 and k = n − 1 (line 2), and
m is a suitable hyperparameter with value less than z.

Algorithm 1: BPIE-BiSRNN(S)

Input: long text sequence S
Output: classification probability Softmax(p)

1 s0, s1, . . . , sn−1 ← slice(S)
2 s−1 ← sn ← [0] ∗m
3 for k in range 0 to n− 1 do
4 sk forward ← Concat([sk−1[−m :], sk])
5 sk backward ← Concat([sk, sk+1[: m]])

6 Ok forward ←
→

GRU (sk forward)

7 Ok backward ←
←

GRU (sk backward)
8 O′k forward ← Ok forward[m :]
9 O′k backward ← Ok backward[: −m]

10 rk forward ← Concat([max(O′k forward),
avg(O′k forward), last(O

′
k forward)])

11 rk backward ← Concat([max(O′k backward),
avg(O′k backward), last(O

′
k backward)])

12 rk ← Concat([rk forward, rk backward])

13 R← [r0, r1, . . . , rn−1]
14 R′ ← BiGRU(R)
15 r′ ← Concat([max(R′), avg(R′), last(R′)])
16 p← Fully Connected(r′)

17 return Softmax(p)

sk forward (resp., sk backward) is then used as the input of
a forward (resp., backward) GRU to obtain a forward (resp.,
backward) output tensor Ok forward (resp., Ok backward)
(lines 6–7). Formally,

Ok forward =
→

GRU (sk forward), (3)

Ok backward =
←

GRU (sk backward), (4)
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where the size of Ok forward and Ok backward is (z+m)×h,
with h being the number of hidden states in the GRU.

Furthermore, to avoid duplicate computations in the fol-
lowing steps, we drop the outputs originating from the m en-
riched words, resulting in a target output tensor O′k forward

and O′k backward with a size z×h (lines 8–9). This operation
is called get target tensor and formally written as

O′k forward = Ok forward[m :], (5)

O′k backward = Ok backward[: −m]. (6)

Then, for each pair of O′k forward and O′k backward, we
conduct maximum, average, and last tensor operations on
their first dimension and concatenate the resulting 1× h vec-
tors to obtain a 1st-layer feature representation of sk, denoted
rk, whose size is 1× (6 ∗ h) (lines 10–12). Furthermore, we
merge the representations of all subsequences to a full 1st-
layer feature representation of the input long text sequence S,
denoted R, whose size is n× (6 ∗ h) (line 13).

R is further passed to a BiGRU to get a full 2nd-layer
output of S, denoted R′, and then maximum, average, and
last tensor operations are conducted again on R′ to get the
full 2nd-layer feature representation r′ (lines 14–15). Finally,
we send r′ into a fully-connected layer and apply softmax
operation to get results (lines 16–17). Please note that BPIE-
BiSRNNs are set to three layers in this work for clarity; how-
ever, by stacking multiple GRUs between the first two layers,
BPIE-BiSRNNs can be easily extended to deeper networks.

3. EXPERIMENTS

To show the strength of our proposed BPIE-SRNN model
in handling long text analysis tasks and offering a superior
performance in both accuracy and efficiency, standard RNNs
with GRUs [8] as the recurrent unit and the state-of-the-art
solution, SRNNs [14], are selected as the baselines. In addi-
tion, the performance of the bidirectional models of GRUs,
SRNNs, and BPIE-SRNNs (denoted BiGRUs, BiSRNNs, and
BPIE-BiSRNNs, respectively) is further evaluated to show the
advantage of applying the bidirectional structure to further en-
hance the classification accuracies of models. For a fair com-
parison, the experiments are performed on the same public
large online real-world datasets used in [14]. The statistic in-
formation of the datasets is shown in Table 1, and the detailed
descriptions are as follows:

Rating sentiment datasets: Three subsets of Yelp re-
views released by the Yelp Dataset Challenge1 in the years
2013, 2014, and 2015 are extracted by Yu an Liu [14] to con-
struct three Yelp rating sentiment datasets, denoted Yelp 2013,
Yelp 2014, and Yelp 2015, respectively. These datasets contain
468, 608 documents, 670, 440 documents, and 897, 835 doc-
uments, respectively, and each document is associated with a
rating sentiment label, ranging from 1 to 5 stars (the more,
the better). Then, 10% of the documents in each dataset are
randomly selected using the same random seed as in [14] to
form a test set, and the rest is used as the training set.

Polarity sentiment dataset: Yelp reviews are also used
by Zhang et al. [15] to construct a polarity sentiment dataset,

1https://www.yelp.com/dataset/challenge

denoted Yelp P, where each document is associated with a
polarity sentiment label (either positive or negative). This
dataset is also used in [14], and the same division of train-
ing and test sets as in [15] is adopted.

3.1. Training Details and Code Release

All models are implemented using Keras [16], and trained
on a GPU server with an NVIDIA GTX 1080Ti GPU. The
training details here are all similar to that in [14], except for
the length of subsequences. Specifically, in [14], the input
long text sequence is sliced into several subsequences with
32 words in each of them; however, in BPIE-SRNNs, we add
to each subsequence the last 5 words of the previous subse-
quence to enrich the semantic dependency information be-
tween sliced subsequences, making the length of each subse-
quence become 37; thus, to keep a fair comparison in training
efficiency, the length of subsequences in SRNNs is also set
to 37. Similarly, the length of each subsequence in BiSRNNs
is also the same as that in BPIE-BiSRNNs.

To facilitate future research and clarify the details, easy-
to-run codes have been released online.2 Some important
training details are as follows: (i) the pre-trained Glove em-
beddings in [17] are used to initialize the word embeddings;
(ii) the batch size is 512; (iii) the recurrent unit is set as GRU,
and all its hidden states and fully-connected layers have 64
dimensions; (iv) all models are learned using the Adam opti-
mizer [18] with learning rate α = 0.001, the first momentum
β1 = 0.9, and the second momentum β2 = 0.999; and (v) the
dropout rate is 0.2.

3.2. Main Results

Table 2 depicts the performance of the proposed models,
BPIE-SRNNs and BPIE-BiSRNNs, and their correspond-
ing baselines, GRUs, SRNNs, BiGRUs, and BiSRNNs, on
four sentiment datasets, Yelp 2013, Yelp 2014, Yelp 2015,
and Yelp P, in terms of classification accuracy and training
efficiency. Despite some slight differences, due to different
subsequence lengths (37 vs. 32) and different kinds of GPUs
used (1080Ti vs. 1080), the performance results of GRUs
and SRNNs in Table 2 are highly consistent with the results
reported in [14], showing the correctness of our experiments.

In Table 2, BPIE-SRNNs (resp., BPIE-BiSRNNs) signif-
icantly outperform their corresponding baselines, GRUs and
SRNNs (resp., BiGRUs and BiSRNNs), on all four datasets
in terms of classification accuracy. This demonstrates that
BPIE-SRNNs and BPIE-BiSRNNs successfully overcome
the long-term dependency loss problem in the lower levels
of SRNNs and BiSRNNs by applying breaking point infor-
mation enrichment to strengthen the semantic dependencies
between sliced subsequences. Furthermore, due to break-
ing point information enrichment, the training time costs
of BPIE-SRNNs and BPIE-BiSRNNs on all datasets are in-
evitably higher than those of SRNNs and BiSRNNs; however,
the increases are always less than 20%, which is minor and
acceptable in practice, and the time costs are still much less

2Code release link: https://github.com/limberc/BPIE-BiSRNN
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Table 1. Dataset information

Dataset Classes Documents Training Samples Test Samples Max Words Average Words

Yelp 2013 5 468,608 421,748 46,860 2,185 130
Yelp 2014 5 670,440 603,396 67,044 2,379 116
Yelp 2015 5 897,835 808,052 89,783 2,372 108

Yelp P 2 598,000 560,000 38,000 1059 136

Table 2. Classification accuracy and training efficiency of all models on four sentiment datasets

Dataset Model Accuracy (%) Time/Epoch (sec) Dataset Model Accuracy (%) Time/Epoch (sec)

Yelp 2013

GRUs 66.02 730

Yelp 2014

GRUs 70.29 1,253
SRNNs 66.58 102 SRNNs 70.46 151

BPIE-SRNNs 67.30 121 BPIE-SRNNs 70.90 183
BiGRUs 66.68 1,472 BiGRUs 70.52 2,492

BiSRNNs 66.72 213 BiSRNNs 70.68 312
BPIE-BiSRNNs 68.04 251 BPIE-BiSRNNs 71.60 372

Yelp 2015

GRUs 73.24 1,609

Yelp P

GRUs 96.05 763
SRNNs 72.93 218 SRNNs 96.07 136

BPIE-SRNNs 73.54 247 BPIE-SRNNs 96.36 170
BiGRUs 73.36 3,176 BiGRUs 96.25 1,532

BiSRNNs 73.34 440 BiSRNNs 96.16 281
BPIE-BiSRNNs 74.12 501 BPIE-BiSRNNs 96.84 344

than those of GRUs and BiGRUs. These results show that
BPIE-SRNNs and BPIE-BiSRNNs can achieve a much better
accuracy than SRNNs and BiSRNNs in long text analysis
tasks, while maintaining a superior training efficiency.

Table 2 also exhibits that the bidirectional models, Bi-
GRUs, BiSRNNs, and BPIE-BiSRNNs, always outperform
the single directional models, GRUs, SRNNs, and BPIE-
SRNNs, respectively, in terms of classification accuracy on
all datasets, and BPIE-BiSRNNs achieve the best accuracy
among all six models. This finding proves that besides the de-
pendency information in the previous context, the information
in the following context is also beneficial for long text anal-
ysis tasks; thus, when the accuracy instead of the time cost
is the first priority, it is reasonable to extend BPIE-SRNNs to
BPIE-BiSRNNs, to further enhance the accuracy.

Notice also that the accuracy improvements of BPIE-
BiSRNNs relative to BPIE-SRNNs are higher than those
of BiSRNNs relative to SRNNs on all datasets. It proves
that, by using breaking point information enrichment, BPIE-
BiSRNNs successfully overcome the long-term dependency
loss problem in lower levels of BiSRNNs, making it capable
to obtain more backward dependency information in lower
levels and to get more accurate long-term backward depen-
dencies in higher levels. This thus results in higher accuracy
improvements in BPIE-BiSRNNs compared to BiSRNNs.

3.3. Effect of Increasing Text Length

We also investigate the effect of increasing the text length on
the accuracy improvement of BPIE-BiSRNNs (resp., BPIE-
SRNNs) relative to BiSRNNs (resp., SRNNs). The experi-
ments are on five subsets of text sequences selected from Yelp
2013, where the sequence lengths are 100-200, 300-400, 500-
600, 700-800, and 900-1000 words, respectively.

As shown in Table 3, the accuracy improvement of BPIE-

Table 3. Accuracy on different text lengths

model

Acc (%) Length 100−
200

300−
400

500−
600

700−
800

900−
1000

BiSRNNs 66.87 66.01 68.28 57.25 53.23
BPIE-BiSRNNs 68.27 69.67 72.03 65.65 61.29

improvement 1.40 3.66 3.75 8.40 8.06

BiSRNNs relative to BiSRNNs greatly rises up with the in-
crease of the text length: when the text length is 100-200
words, the accuracy improvement is only 1.40%; it then rises
up to 3.66% and 3.75%, when the text length increases to 300-
400 and 500-600 words, respectively; the accuracy improve-
ment finally reaches up to 8.40% and 8.06%, when the text
lengths are 700-800 and 900-1000 words, respectively. In ad-
dition, the comparative results of BPIE-SRNNs and SRNNs
are similar and exhibit the same finding; so they are omitted
due to space limit. This observation further demonstrates the
capability of BPIE on discovering long-term semantic depen-
dencies, and proves that BPIE-BiSRNNs and BPIE-SRNNs
are better choices than BiSRNNs and SRNNs in handling
long text analysis tasks.

4. CONCLUSION
We have proposed a breaking point information enrichment
mechanism to strengthen dependencies between sliced sub-
sequences without hindering parallelization. The resulting
BPIE-SRNN model has also been extended to a bidirectional
model, called BPIE-BiSRNN. In experiments, BPIE-SRNNs
and BPIE-BiSRNNs always achieve a much better accuracy
than SRNNs and BiSRNNs, while having a superior training
efficiency. In future works, we will apply BPIE-SRNNs and
BPIE-BiSRNNs to improve more NLP applications. More-
over, we will also investigate more techniques, e.g., distance
masking [19], to further enhance the models’ performances.
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