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ABSTRACT

Forecasting time series has several applications in various do-

mains. The vast amount of data that are available nowadays

provide the opportunity to use powerful deep learning ap-

proaches, but at the same time pose significant challenges

of high-dimensionality, velocity and variety. In this paper, a

novel logistic formulation of the well-known Bag-of-Features

model is proposed to tackle these challenges. The proposed

method is combined with deep convolutional feature extrac-

tors and is capable of accurately modeling the temporal be-

havior of time series, forming powerful forecasting models

that can be trained in an end-to-end fashion. The proposed

method was extensively evaluated using a large-scale finan-

cial time series dataset, that consists of more than 4 million

limit orders, outperforming other competitive methods.

Index Terms— Temporal Bag-of-Features, Limit Order

Book, Time series forecasting

1. INTRODUCTION

Forecasting time series has several applications in various do-

mains, ranging from predicting the behavior of financial mar-

kets [1], to energy load prediction [2]. The large amount

of data that are continuously generated in many of these do-

mains provide the opportunity to employ powerful deep learn-

ing methods, but at the same time pose significant challenges

of high-dimensionality, velocity and variety. This led to the

development of various methods for time series analysis and

forecasting. Early approaches employed adaptive distance

metrics, such as Dynamic Time Wrapping [3], while with the

advent of deep learning, neural network-based methods, such

as recurrent and convolutional models [4, 5], are increasingly

used. Apart from these methods, other models, such as the

Bag-of-Features model (BoF), was recently adapted toward

efficiently processing large amounts of complex and high-

dimensional time series [6, 7, 8], due its ability to hand ob-

jects consisting of a varying number of features, as well as

withstanding distribution shifts better than competitive meth-

ods [9, 10].

The Bag-of-Features model (BoF) was initially proposed

for handling images and involves the following pipeline [11]:

First, a number of feature vectors are extracted from each in-

put object (this is called feature extraction step). This way the

feature space is formed. Then, a set of representative features,

that can be used to quantize the extracted feature vectors, are

learned. This step is called dictionary learning, while the rep-

resentative features are usually called codewords. The code-

words form the dictionary (also called codebook) of the BoF

model. Finally, the quantized feature vectors are aggregated

compiling a constant length histogram vector for each input

object. The ability of the BoF model to handle objects of

various lengths provides one important advantage over other

methods, i.e., allows the BoF model to efficiently extract a

constant length representation of time series regardless its ac-

tual length.

The main contribution of this work is the proposal of a

novel deep learning formulation of the Bag-of-Features model

adapted toward the needs of time series forecasting. The pro-

posed method combines the aforementioned advantages of

the BoF model with the enormous learning capacity of deep

learning models, leading to the development of powerful fore-

casting models. However, using existing temporal BoF for-

mulations, such as [9, 10], in complex deep learning architec-

tures is not straightforward. First, the existing formulations

usually require the use of sophisticated and computationally

intensive initialization schemes, e.g., k-means. To overcome

this limitation, a novel logistic formulation of the BoF model

is proposed, allowing for directly training the resulting model

without using sophisticated initialization schemes or tuning

any hyper-parameter. The proposed method can be combined

with additional deep information extraction layers, e.g., con-

volutional layers, demonstrating the ability to use the pro-

posed logistic BoF formulation with deep neural networks.
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Fig. 1. The proposed deep temporal logistic BoF architecture for time series forecasting.

Furthermore, the proposed method introduces the ability to

perform fine-grained temporal modeling, as shown in Fig-

ure 1, where the short-term, mid-term, and long-term behav-

ior of time series are modeled. The proposed method is eval-

uated, for two different forecasting tasks, using a large-scale

financial time series dataset that consists of more than 4 mil-

lion limit orders.

The rest of the paper is structured as follows. First, the

related work is briefly introduced and compared to the pro-

posed approach in Section 2. Then, the proposed method is

introduced in Section 3, while the experimental evaluation is

provided in Section 4. Finally, conclusions are drawn in Sec-

tion 5.

2. RELATED WORK

There is an increasing number of recent works in the liter-

ature that employ variants of the Bag-of-Features model to

perform time series analysis, e.g., forecasting, retrieval, etc.

In [12], a BoF-based method was proposed for extracting dis-

criminative representations by employing a discriminative ob-

jective for the optimizing the codebook. A dictionary learn-

ing methods for the BoF model was also utilized in [13], in

order to learn retrieval-oriented representations. In more ad-

vanced approaches, time series segments of various lengths

were used, as in [6], to allow for efficiently handling warping,

while an approach that employs temporal modeling was pro-

posed in [7]. Quite recently, a neural formulation of the BoF

model was used to perform time series analysis [14], while an

extension of this method, that allows for better capturing the

temporal dynamics of time series, was introduced in [8].

In contrast with [8], in this work we use a logistic BoF for-

mulation that allows for training temporal BoF models with-

out using any sophisticated initialization schemes. Also, the

proposed method does not require the carefully tuning of any

hyper-parameter, e.g., the initial scaling factor of the kernel

function that was employed in [8]. Furthermore, the proposed

BoF formulation was appropriately designed to allow for the

smooth flow of information in deep architectures. To the best

of our knowledge, this is the first work in which a deep tem-

poral formulation of the BoF model is combined with con-

volutional feature extraction layers, demonstrating that it is

indeed possible to learn powerful deep learning models for

time series analysis.

3. PROPOSED METHOD

Let X = {x1, x2, . . . , xN} be a collection of N time series,

where xi denotes the i-th time series. Also, let xij ∈ R
D

be the j-th feature vector extracted from the i-th time series,

where D is the dimensionality of the extracted feature vectors.

Several different choices exist for extracting feature vectors

from time series. The most straightforward one is to directly

consider the set of measurements for each time step as a sep-

arate vector (in this case D denotes the dimensionality of the

time series) [12]. However, more sophisticated methods do

exist, e.g., using domain knowledge to design and extract fea-

tures describing various aspects of the time series, e.g., as pro-

posed in [15] for modeling high frequency limit order book

data. Also, let Ni denote the length of i-th time series. Note

that it is possible for different time series to have different

lengths, since the BoF model can directly handle objects from

which a varying number of feature vectors are extracted.

Next, the extracted vectors are fed to a sequence of 1-D

convolutional layers, as show in Figure 1. The convolutional

layers are employed to better model the temporal relation-

ships between succeeding feature vectors. Let fconv(·) denote

the employed convolutional feature extractor that receives the

input feature vectors Xi = [xi,1,xi,2, . . . ,xi,Ni ] and extracts

the k-th output feature vector after performing various convo-

lutional operations. The resulting feature vector is denoted by

xc
ik = fconv(Xi, k) ∈ R

Nf , where Nf the number of filters

used in the last convolutional layer. Therefore, after feed-

ing the extracted feature vectors into the convolutional layers

each time series is represented by the transformed feature set

Xc
i = [xc

i,1,x
c
i,2, . . . ,x

c
i,Ni

], assuming that the appropriate

padding is used to ensure that Ni transformed feature vectors

will be extracted. These transformed feature vectors also cap-
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ture part of the temporal relationships between the original

vectors xij .

Then, the transformed feature vectors are aggregated

using the proposed Temporal Logistic Bag-of-Features (ab-

breviated as “T-LoBoF”). First, the similarity between each

transformed feature vector and each codeword vk ∈ R
Nf is

measured as:

uijk = xc
ij

Tvk ∈ R. (1)

To ensure that (1) encodes a proper similarity metric that can

be used to quantize the extracted vectors into the employed

codewords, an appropriate transformation function must be

used. Several methods have been proposed to this end, e.g.,

using the absolute value of the inner product [16], or appro-

priately transforming the Euclidean distance between the fea-

ture vectors and the codewords using the Gaussian kernel [9].

However, the former approach leads to non-bounded similar-

ity metrics, while the latter depends on the use of a Gaussian

kernel for the similarity calculations that implies that a) the

codewords must be carefully initialized (usually using the k-

means algorithm) and b) the scaling factor of the kernel must

be manually tuned. To avoid these drawbacks, as well as de-

rive a method that works with the minimal amount of tuning

and avoids the need for complicated initialization schemes,

we propose transforming the inner product appearing in (1)

using the logistic sigmoid (σ(·)) function as follows:

uijk = σ(xc
ij

Tvk) ∈ (0, 1), (2)

where σ(x) = ex

ex+1 . The employed measure uijk is always

bounded between 0 and 1 and expresses the similarity be-

tween the feature vector xc
ij and the codeword vk. The nor-

malized membership is obtained for each of these similarity

values, allowing for quantizing the extracted feature vectors

into the used codewords, using the following equation:

dijk =
uijk∑NK

l=1 uijl

·NK , (3)

where NK is the number of used codewords. Note that

the values of the normalized membership vector dij =
[dij1, dij2, . . . , dijNK

] ∈ R
NK sum to NK instead of 1.

This formulation is equivalent to the traditional l1 normal-

ization performed in such soft BoF formulations , e.g., [9, 8]

(the values are simply scaled by a constant factor), while -

at the same time - ensures the smooth flow of gradients in

the resulting model. Indeed, scaling this vector by NK en-

sures the proper information flow through the model [17].

Finally, the histogram vector that describes the distribution of

the transformed feature vectors xc
ij of the i-th time series is

calculated as:

si = NS · 1

Ni

Ni∑

l=1

dij ∈ R
NK , (4)

where NS is the number of feature vectors fed to the model

during the training process. Again, we avoid using the usual

l1 normalization, that can cause instabilities during the train-

ing process, by scaling the resulting histogram by NS . Note

that the l1 norm of si is kept constant, regardless the number

of feature vectors fed to model during the training/inference,

ensuring that the resulting formulation keeps the length-
invariance property of BoF.

However, the histogram vector si describes the overall be-

havior of the time series through the time. To capture the fine-

grained temporal dynamics, we propose segmenting the trans-

formed feature vectors into NT temporal regions. In Figure 1,

NT = 3 temporal regions are used corresponding to the short-

term, mid-term, and long-term behavior of the time series.

Therefore, the most recent � Ni

NT
� feature vectors are employed

for calculating the short-term histogram sshorti , the preceding

� Ni

NT
� feature vectors are used to calculate the mid-term his-

togram smid
i , while the rest of the feature vectors are used for

calculating the long-term histogram slongi . Finally, the result-

ing concatenated vector si = [sshorti , smid
i , slongi ] ∈ R

3NK is

fed to the following fully connected layer, as shown in Fig-

ure 1.

The resulting architecture can be trained in an end-to-end

fashion using gradient descent, i.e.,

Δ(Wconv,V,Wfc) = η(
∂L

∂Wconv
,
∂L
∂V

,
∂L

∂Wfc
), (5)

where L is the employed loss function, Wconv denotes the

parameters of the convolutional feature extractor fconv(·),
V = [v1,v2, . . . ,vNK

] denotes the codebook used by the

LoBoF model, while Wfc denotes the parameters of the

fully connected layers. The cross-entropy loss is used for

all the experiments conducted in this paper, while the same

codebook is utilized for all the temporal regions. The Adam

algorithm was used to perform the optimization [18]. The

training time series were fed to the network in batches of 128

samples, where each time series was sampled with probability

inversely proportional to the frequency of its class. Finally,

the learning rate was set to η = 10−4, while the networks

were trained for 20 epochs.

4. EXPERIMENTAL EVALUATION

The proposed method was evaluated using a large-scale limit

order book dataset [20]. The employed dataset consists of

high frequency limit order book data collected from 5 Finish

companies traded in the Helsinki Exchange (operated by Nas-

daq Nordic). The 10 highest and lower ask order prices were

collected for each time step, while data were collected over a

period of 10 business days (1st June 2010 to 14th June 2010).

A total of 4.5 million limit orders were gathered and pro-

cessed according to the pre-processing and feature extraction

pipeline proposed in [15]. Thus, a total number of 453,975

144-dimensional feature vectors were extracted.

The proposed algorithms were evaluated using an an-

chored evaluation setup [21]: The time series that were
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Table 1. Evaluation results using the FI-2010 dataset (price direction prediction)
Method Prediction Target Macro-Precision Macro-Recall Macro-F1 Cohen’s κ
MLP [8] 10 40.20± 0.50 56.25± 2.20 36.91± 1.81 0.1281± 0.0137
BoF [8] 10 39.26± 0.94 51.44± 2.53 36.28± 2.85 0.1182± 0.0246
N-BoF [8] 10 42.28± 0.87 61.41± 3.68 41.63± 1.90 0.1724± 0.0212
T-BoF [8] 10 43.85± 1.11 66.66± 3.40 43.96± 1.59 0.1992± 0.0201
WMTR [19] 10 46.25± N/A 51.29± N/A 47.87± N/A N/A
T-LoBoF (raw) 10 46.34± 1.49 69.40± 3.61 48.98± 2.30 0.2538± 0.0306
T-LoBoF (conv) 10 47.80± 1.64 68.25± 4.56 51.58± 2.15 0.2814± 0.0309

MLP [8] 50 44.03± 1.25 52.67± 1.56 41.91± 2.33 0.1787± 0.0229
BoF [8] 50 42.56± 1.26 49.57± 2.28 39.56± 2.36 0.1576± 0.0254
N-BoF [8] 50 47.20± 1.80 58.17± 2.61 46.15± 4.07 0.2285± 0.0419
T-BoF [8] 50 49.58± 2.10 63.50± 2.54 49.82± 3.18 0.2723± 0.0348
T-LoBoF (raw) 50 50.48± 1.50 65.46± 2.77 51.42± 2.16 0.2900± 0.0269
T-LoBoF (conv) 50 51.56± 2.29 65.81± 4.32 53.73± 2.85 0.3116± 0.0403

extracted from the first day were used to train the model,

while the data from the second day were employed for the

evaluation. Then, the first two days were used for the train-

ing and the next day was used for the evaluation, etc. This

process was repeated 9 times. For all the evaluated metrics

(macro-precision, macro-recall, macro-F1 and Cohen’s κ),

the mean and standard deviation are reported. The direction

of the average mid price (up, stationary or down) after 10 and

50 time steps were predicted. A stock was considered station-

ary if the change in the mid price was less than to 0.01% (or

0.02% for the prediction horizon of 50 time steps).

For each time step a time series that consists of the 15

more recently extracted feature vectors was compiled. The

time series was segmented into NT = 3 temporal regions,

each consisting of 5 feature vectors. The employed convo-

lutional feature extractor was composed of 256 1D convolu-

tional filters (the size of the kernel was set to 5 and the stride

was set to 1). A codebook composed of 256 codewords shared

across the temporal models and two fully connected layers

(with 512 and 3 neurons respectively) were used. The ReLU

function was used both for the convolutional feature extractor

and the first fully connected layer. Two variants of the pro-

posed method were evaluated: a) using the aforementioned

architecture as described and shown in Figure 1 (denoted by

“T-LoBoF (conv)”) and b) directly using the raw feature vec-

tors without employing a convolutional layer (denoted by “T-

LoBoF (raw)”) .

The experimental results are shown in Table 1. The

proposed methods are compared to various competitive

approaches for forecasting financial time series, including

the plain Temporal BoF (“T-BoF”) approach [8] and the

Weighted Multichannel Time series Regression (WMTR)

method [19], as well as to various baselines. Several conclu-

sions can be draw from the results reported in Table 1. First,

the plain logistic BoF formulation (without using any con-

volutional feature extraction layers) performs significantly

better than the competitive T-BoF method. Note that the

T-LoBoF method is significant easier to use than the T-BoF,

since it doesn’t require any sophisticated initialization scheme

or extensive hyper-parameter tuning. For example, the Co-

hen’s κ rises from approx. 0.20 (T-BoF) to over 0.25, when

the prediction horizon was set to the next 10 time steps.

Furthermore, the proposed approach can be combined with

convolutional feature extraction layers, significantly increas-

ing the learning capacity of the model. Indeed, the proposed

deep T-LoBoF formulation (“T-LoBoF (conv)”), outperforms

all the other evaluated methods when combined with convo-

lutional feature extraction layers.

5. CONCLUSIONS

In this paper, a novel deep learning formulation of the Bag-

of-Features model that was adapted toward the needs of time

series forecasting was presented. The proposed method can

effectively combine the advantages of the BoF model with the

great learning capacity of DL models. The proposed method

employs a fully differential logistic formulation of the BoF

model, allowing for directly training the resulting architecture

in an end-to-end fashion, leading to powerful DL methods

for time series analysis. Furthermore, the proposed method

is capable of modeling the behavior of time series at vari-

ous temporal levels. The proposed method was extensively

evaluated and compared to other competitive methods using a

large-scale financial time series dataset that consists of more

than 4 million limit orders.
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