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ABSTRACT

Inferring air quality from a limited number of observations is
an essential task for monitoring and controlling air pollution. Ex-
isting inference methods typically use low spatial resolution data
collected by fixed monitoring stations and infer the concentration
of air pollutants using additional types of data, e.g., meteorological
and traffic information. In this work, we focus on street-level air
quality inference by utilizing data collected by mobile stations. We
formulate air quality inference in this setting as a graph-based matrix
completion problem and propose a novel variational model based on
graph convolutional autoencoders. Our model captures effectively
the spatio-temporal correlation of the measurements and does not
depend on the availability of additional information apart from the
street-network topology. Experiments on a real air quality dataset,
collected with mobile stations, shows that the proposed model out-
performs state-of-the-art approaches.

Index Terms— air quality inference, variational graph autoen-
coder, graph-based matrix completion, deep learning.

1. INTRODUCTION

Air pollution is one of the most serious threats for the human health
and the environment. In order to mitigate air pollution, we need
to accurately measure air quality at very high spatial and temporal
rates, especially within urban areas. Fixed monitoring stations have
been deployed to measure the concentration of air pollutants. Given
the high cost of the necessary instruments, the number of such in-
stallations is limited. Although fixed stations can collect measure-
ments with high temporal resolution, their spatial resolution is very
low; hence, there is a need to spatially infer the concentration of
air pollutants. Recent advances in sensors, IoT platforms, and mo-
bile communications enable deploying low-cost mobile monitoring
stations, e.g., by mounting sensors on vehicles. Examples include
the air quality monitoring system using the public transport network
in Zurich [1], the system using Google street-view cars in Oak-
land, CA [2], and imec’s City-of-Things platform that uses postal
trucks [3]. Deploying mobile stations increases the spatial density
of air quality measurements; however, their temporal resolution per
location is low since the vehicles are moving. In addition, there are
still locations not covered by the vehicles. This renders computation-
ally inferring missing air quality measurements across the spatial and
temporal dimensions a problem of high interest.
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A number of methods have been proposed to infer the air pollu-
tant concentration using measurements collected by fixed monitoring
stations. They are based on either physical models or data-driven
solutions [4]. In the former approach, the complex physical dis-
persion processes of air pollutants are modeled using observed data
and empirical assumptions [5, 6, 7]. Methods in this category, how-
ever, often require the availability of additional information, e.g., the
distribution of pollution sources and accurate weather models [8].
Furthermore, the assumptions behind them might not hold given the
variability of urban landscapes [4]. Data-driven methods do not rely
on strong assumptions; instead, they utilize diverse local data, such
as meteorological information, points of interest and traffic informa-
tion, to infer the concentration of air pollutants. By leveraging the
recent advances in deep learning, in particular, data-driven methods
have achieved good inference performance [4, 9, 10].

Only very limited work has focused on air quality inference us-
ing data collected by mobile stations [1]. In this paper, we use the
City-of-Things platform from imec [3] to retrieve street-level air
quality data measured using mobile stations in Antwerp, Belgium.
Given the available data, we infer the air quality in unmeasured lo-
cations across time and space. We follow a data-driven approach
and formulate the air quality inference problem as a graph-based
matrix completion problem. Specifically, we exploit the topology of
Antwerp’s street network and propose a novel deep learning model
based on variational graph autoencoders; we refer to our model as
AVGAE. The model captures effectively the spatio-temporal depen-
dencies in the measurements, without using other types of data, such
as traffic or weather, apart from the street-network topology. Exper-
iments on real data from the City-of-Things platform show that our
method outperforms various reference models.

To summarize, our main contributions in this paper are: (i) we
formulate air quality inference as a graph-based matrix completion
problem and propose a variational graph autoencoder for accurate
inference. To the best of our knowledge, this is the first work to ex-
plore graph-based neural network models in the context of air quality
inference; (ii) the proposed model effectively incorporates the tem-
poral and spatial correlations via a temporal smoothness constraint
and graph convolutional operations; (iii) we carry out comprehensive
experiments on real-world datasets to evaluate the proposed model
showing its superior performance compared to existing models.

The rest of this paper is as follows: Section 2 reviews the related
work, and Section 3 states the problem and presents our model. Sec-
tion 4 describes the experiments and Section 5 concludes the paper.
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2. RELATED WORK

2.1. Air Quality Inference

Unmeasured air pollution in locations or time instances can be esti-
mated using simple interpolation or resampling techniques [10, 11].
However, given the dynamics of air pollutants, these techniques tend
to produce high estimation errors. Alternatively, one can use kriging-
based variogram models to capture the variance in air pollution data
with respect to the geodesic distance [12, 13]. As a purely spatial
interpolation method, however, this approach does not capture the
temporal correlation in the air quality data.

In recent years, we have witnessed the rise of machine-learning-
based methods. In [14], a co-training approach with temporal and
spatial classifiers is proposed for classifying discrete air quality in-
dices (AQIs); yet, this model can not be used to infer the real-valued
concentration of air pollutants. Deep-neural-network-based models
have been proposed for air quality inference in [4, 9]. These mod-
els exploit the spatio-temporal correlations in the concentration of
air pollutants either by incorporating additional information in the
model—from traffic, weather, etc.—or by imposing objective con-
straints. Unlike these methods, our work utilizes a graph variational
autoencoder to estimate the concentration of air pollutants across
space and time, and provides higher estimation performance with-
out considering additional information. Alternatively, the authors
of [15] proposed a model to infer the air quality using a graph-based
semi-supervised approach. The work considers an affinity graph of
locations and deploys a label propagation mechanism to predict the
air quality. This work is similar to ours in terms of formulating the
air quality inference problem on graphs; however, instead of label
propagation, we propose an end-to-end graph convolutional model,
which is more flexible. It is worth noting that in [9, 14, 15] the con-
sidered area is divided in a uniform grid, whereas in the proposed ap-
proach we aggregate measurements non-uniformly across the street
network (see Section 3.1)

2.2. Matrix Completion on Graphs

Matrix completion is a fundamental problem in machine learning,
which focuses on inferring unknown entries of matrices [16]. Ap-
plications of matrix completion include recommender systems [17],
cellular network planning [18] and air quality inference [19], to
name a few. Recently, a number of studies have addressed the
problem of matrix completion with tools from graph signal process-
ing [20, 21, 22, 23, 24] with applications in recommender systems.
Our method is related to these approaches but it includes specific
components tailored to the problem of air quality inference from
mobile measurements. In the experimental section, we compare
the performance of our method against [17, 20] and demonstrate its
superior performance in inferring air quality data.

2.3. Variational Graph Autoencoders

Variational autoencoders (VAEs) [25] are generative models that
have lately received considerable attention. The study in [26]
proposed a VAE with fully connected neural network layers with
application in collaborative filtering, a particular application of
matrix completion. Furthermore, variational inference on graphs
has been proposed for link prediction [27]. Our model is different
from [27, 26] in that we propose a variational graph autoencoder,
which can express the spatial and temporal dependencies across air
pollution measurements. Furthermore, the data in [26] is assumed
to follow a discrete multinomial distribution, whereas in our model,
the air pollution measurements follow a continuous distribution.

3. METHOD

3.1. Problem Formulation and Notation

We focus on air quality inference at the street network of urban
areas—namely, we consider only locations on streets—using mea-
surements on the concentration of air pollutants collected by sensor-
equipped vehicles moving around a specific urban area; the problem
statement adheres to the smart cities concept. Each vehicle makes
measurements while moving on the city street network, resulting in
high spatial measurement density; in contrast, the measurements at
a specific location have low temporal resolution.

As the time and location associated to a measurement are contin-
uous, it is convenient to aggregate the measurements at discrete time
instances and locations. We uniformly divide the time span of the
data into equal slots of duration 7 (e.g., one hour). In a given times-
lot t, we gather all measurements within a pre-defined geographical
distance r from a given spatial location p on the street network and
take their median-value as the measurement at location p at timeslot
t. The street network information is obtained from OpenMapTiles'.
Hence, the aggregation across space is non-uniform and is adapted
to the considered locations on the street network.

The above aggregation process results in a measurement ma-
trix X € RY*? with N the number of considered geographi-
cal locations and 7' the number of timeslots. An entry X;;, with
t1=1,...,Nand j = 1,...,T, corresponds to the measurements
at the i" location and the j™ timeslot. X is a highly incomplete ma-
trix with the set of known entries denoted by 2. Our task is to predict
the air pollution concentration values in the unknown entries using
the measurements (known entries) and the street-network topology.

For notational consistency, in the rest of the paper, we use bold-
faced uppercase letters for matrices, bold-faced lowercase letters for
vectors and regular lowercase letters for scalar variables. Both regu-
lar uppercase and lowercase Greek letters denote constants.

3.2. Variational Autoencoders

VAEs build on the assumption that the data points in a dataset can
be drawn from a distribution conditioned by latent variables; fur-
thermore, the latent variables follow a prior distribution, e.g., the
Gaussian distribution. VAEs attempt to learn a deterministic func-
tion that transforms the Gaussian distribution to the distribution of
the observed data.

Let x denote an example in the dataset and z the vector contain-
ing the latent variables. The inference process is modelled by

q(zlz) = N (n, o), e
where p = fu(z,01) and o0 = f,(x, O2) are parameters of the
Gaussian distribution. The generative process is characterized by

p(x|z) < f.(z, ®). ?2)

It should be noted that f,,, fo and f. are parameterized functions
and their parameters ®1, @2 and ® can be learned from data. These
functions are often implemented by neural network layers. To find
the parameters, one needs to minimize the following equation:

L = ~Eq(z|a) [logp(z|2)] + D[q(2|2)|lp(2)]. 3)
In (3), one can interpret the first term as the reconstruction er-

ror and the second term as a regularization constraint. The second
term is the Kullback-Leibler (KL) divergence between ¢(z|x) and

Uhttps://openmaptiles.com/downloads/europe/belgium/antwerp/
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Fig. 1. The proposed variational graph autoencoder architecture for air quality inference (AVGAE). The input of AVGAE consists of the
incomplete matrix X and the matrix of geocoordinates .S. The light gray row in X indicates a location without measurements across time,
dark gray cells represent unmeasured locations at a given time instance, and the entries with a red font are reconstructed known entries on
which we evaluate the loss function. The function blocks fgen represent GCN layers. The encoder outputs the parameters p, o of a Gaussian
distribution. The output matrix X approximates the known entries and contains the inferred unknown entries.

the prior p(z) = N(0, I), which can be computed with a closed
form formula [25].

3.3. Variational Graph Autoencoders

Variational graph autoencoders (VGAEs) [27] adhere to the VAE
concept and utilize graph convolutional layers (GCN) for the param-
eterized functions f,, f» and f.. Given a graph G = (V, £) with
an adjacency matrix A € RY*Y and a degree matrix D € RV XV,
N = |V)|, a graph convolutional layer [28] is expressed as

foen(X) :J(ﬁféAbféXW) 4)

where A = A + Iy, ﬁij = Zj Aij, X € RV*T js the input
signal summarized in a matrix, W € R7*P is the corresponding
weight matrix with D being the GCN layer’s dimensionality, and o
indicates a nonlinear function. By stacking multiple GCN layers,
more complex functions can be constructed. In what follows, we
propose a particular architecture tailored to the air quality inference
task.

3.4. The Proposed AVGAE Architecture

The architecture of our model, which we refer to as AVGAE, is de-
picted in Fig. 1. We build a graph of N nodes by considering the
geodesic distance among the IV corresponding discretized locations
on the street network. Two nodes are connected if the geodesic dis-
tance between them is smaller than a predefined threshold 9, or if
they belong to the same road segment. The weight of a connection
is the inverse of the geodesic distance in meters computed by the
Haversine formula [29]. Furthermore, we summarize the locations’
geocoordinates in a matrix S. Our model is described by the follow-
ing set of equations:

u=GCN,(X,S,0,) 5)
o =GCN, (X, S,03) (6)
Z ~N(p,0) (7
X =GCN.(Z,®) ®)

In (5), (6), (8), GCN,, GCN, and GCN;, are functions obtained
by stacking GCN layers and @, @ and P are parameters that can
be learned from the data. We concatenate the geocoordinate matrix
S with the measurement matrix X horizontally, making S a part
of the input of our model. By doing so, we aim at exploiting the
correlation between the measurements and the geocoordinates. Our

model utilizes two separate branches for training @ and o, thereby
allowing to select proper activation functions for @ and o (the se-
lected functions are mentioned in Section 4).

It is worth mentioning that our model is capable of inferring
values at locations that are not measured by vehicles, which are il-
lustrated by an empty row in matrix X in Fig. 1. This is because the
proposed model captures the spatial correlation between the unob-
served and observed locations through their geocoordinates and the
street network’s topology.

The loss function of our model is defined in (9). We modify (3)
by using the mean absolute error (MAE) regularized by a KL diver-
gence term. Even though the MAE is not everywhere differentiable,
we find that using its sub-gradient is sufficient for optimization with
gradient descent. The temporal dependency between measurements
imposes an additional smoothness constraint:

1 ~
L(X,01,0:,®) = o) D> X — X+
(4,§)€EQ
BDlg(zla)p(z)] ++> . D e TTH(Xy - Xik)? )
(i:0) k€T (i)

In (9), B and ~ are positive tuning parameters and 7 (7, 7) is
the neighborhood of the entry X; ; with respect to the temporal di-
mension. The width of the neighborhood w7 is a parameter that
is fine-tuned experimentally. We minimize the loss function with re-
spect to training entries using the stochastic gradient descent—where
we use the reparameterization technique in [25]—and we deploy the
dropout regularization technique to mitigate overfitting. After train-
ing, we obtain the re-constructed data matrix X containing predicted
values for the unknown entries.

4. EXPERIMENTS

4.1. The Dataset

We rely on the City-of-Things platform [3] to obtain measurements
of the air quality in the Antwerp city in Belgium. The platform
makes use of 24 cars equipped with mobile monitoring devices. We
retrieve the measurements during May 2018 for two air pollutants,
that is, NOs and PM5 5.

As described in Section 3.1, we first apply aggregation as a data
preprocessing step, where we choose 7 = 1 hour and » = 100 me-
ters. After processing, we obtain 3630 and 4086 discrete locations
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Table 1. Air quality inference results.

NO-2 PM; 5

MAE RMSE | MAE RMSE

Kriging linear [12] 18.19 2843 3.28 7.98

Kriging exponential [12] 15.86  25.58 2.89 7.43

KNN-based collaborative filtering [30] | 20.92  32.67 3.60 7.47
SVD [31] 2735 3832 | 741 13.40

NMF [32] 71.67 8234 | 6.75 13.09

NMC [17] 22.12 3283 3.99 8.35

RGCNN [20] 48.6  60.11 6.2 15.4

AVGAE (Our method) [ 14.92 2433 [ 2.56 6.42

Table 2. The description of the NO2 and PM3 5 dataset. The units
for NO2 and PMa 5 are parts per billion (ppb) and ;G /m?.

[ NO2 [ PM 5

Number of locations 3630 4086
Duration in hours 720 720

Max concentration 633.65 | 189.03
Min concentration 0.16 0.07
Mean concentration 85.50 9.83
% of known entries versus all 0.60 0.56

for the NO2 and PM 5 datasets, respectively. Each location is spec-
ified by the pair of latitude and longitude geocoordinates. Moreover,
for each pollutant, a location is associated with a measurement vec-
tor of T = 30 x 24 = 720 dimensions, which is the number of
hours during the considered period. The description of the dataset is
presented in Table 2.

4.2. Experimental Setting

To evaluate the proposed method, we randomly divide the known
entries into training and test sets. That is, 90% of the known en-
tries is used for training and the rest is reserved for testing. We use
two common evaluation metrics, namely, the root mean squared er-
ror (RMSE) and the mean absolute error (MAE). To obtain robust
results, we repeat this procedure with 5 random divisions and report
average results.

To create the graph, we set the distance threshold to § = 200
m. The parameters of the AVGAE are chosen experimentally: we
set the learning rate to @ = 0.005, the KL divergence coefficient
to 5 = 0.1, the temporal smoothness coefficient to v = 0.8, the
temporal neighborhood width to w7 = 3 and the dropout rate to
0.4. For all GCN layers, we use the same dimensionality, that is,
D = 512. We use 4 GCN layers for the encoder and 1 GCN layer
for the decoder. We employ ReLU to activate the GCN layers of the
encoder except for the last GCN layer of the o branch where the
sigmoid function is used because o should contain strictly positive
entries. Because the output is unbounded, it is not necessary to use
an activation function for the GCN layer of the decoder.

As reference benchmarks, we have selected two well-established
kriging-based models, that is, the linear and exponential mod-
els [12]. A kriging model is applied per column of the matrix X
(corresponding to a timeslot) using the geocoordinates information
in S. Furthermore, we consider various state-of-the-art matrix com-
pletion methods, including KNN-based collaborative filtering [30],
SVD-based matrix completion [31], non-negative matrix factoriza-

tion [32], and extendable neural matrix completion [17]. These
models perform completion under an assumption on X, e.g., a
low-rank prior. Furthermore, we compare against the graph-based
matrix completion method in [20]; specifically, the RGCNN model,
where the graph for the row-factor matrix is the same as in our
AVGAE model and the hyper-parameters are kept as in [20]. For
the implementation, we rely on PyKridge® for the kriging models
and Surprise® for the reference matrix completion techniques. The
implementations of [17, 20] are available online. All models have
been trained in our dataset.

4.3. Result and Analysis

The results in air quality inference with the different methods are
shown in Table 1. Kriging-based methods provide good estimation
accuracy, particularly the exponential model. This is because such
models capture properly the spatial correlation in the air quality mea-
surements with respect to the geodesic distance.

On the other hand, matrix completion models assume that there
are hidden factors characterizing rows (a.k.a., discrete locations) and
columns (a.k.a., timeslots). While this assumption is appropriate for
other problems such as recommendation systems, it does not prop-
erly capture the spatio-temporal correlation in the concentration of
air pollutants.

It is evident that our AVGAE model achieves the best perfor-
mance for both the RMSE and MAE metrics and for both pollutants
(NO2 and PM3 5). Conversely to kriging models, AVGAE effec-
tively captures both the temporal and spatial correlations in the data,
and leverages the underlying graph structure of the street network.
Furthermore, unlike the reference matrix completion models, either
graph-based or not, AVGAE adheres to an autoencoder model, which
provides good performance in reconstruction problems.

5. CONCLUSION

Measuring the concentration of air pollutants with mobile stations
is a promising approach to achieve hyperlocal air quality monitor-
ing. The measurements collected by such mobile stations, however,
have very low temporal resolution per location and there are still
unmeasured locations. We formulated the air quality inference prob-
lem in this setting as a matrix completion problem on graphs, and
proposed a variational graph autoencoder model to solve it. The
proposed model was experimentally shown to effective capture the
spatio-temporal correlation in the measurements, resulting in better
air quality inference compared to various state-of-the-art kriging and
matrix completion methods.

Zhttps://pykrige.readthedocs.io/en/latest/index.html
3https://surprise.readthedocs.io/en/stable/index.html
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