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ABSTRACT

An underdetermined multi-measurement vector linear regression
problem is considered where the parameter matrix is row-sparse
and where an additional constraint fixes the number of nonzero el-
ements in the active rows. Even if this additional constraint offers
side structure information that could be exploited to improve the
estimation accuracy, it is highly nonconvex and must be dealt with
with caution. A detection algorithm is proposed that capitalizes on
compressed sensing results and on the generalized distributive law
(message passing on factor graphs).

Index Terms— Structured sparsity, compressed sensing, factor
graphs, message passing.

1. INTRODUCTION

Mathematical models involving a huge number of parameters de-
mand significant amounts of storage and computation capabilities,
and extracting useful information from them may be a challenging
task. This is especially true when practical issues (e.g., time con-
straints) limit the number of observations and lead to underdeter-
mined problems.

In this context, the sparsity hypothesis has proven to be a
powerful ally [1, 2]: by assuming a sparse parameter vector (that
is, most parameters are negligible) one can easily reduce com-
putation/storage requirements and, most importantly, can tackle
ill-posed problems with more degrees of freedom than observations,
which otherwise present no meaningful solution. Note that there
exist problems that are inherently sparse like, for instance, massive
machine-type communications systems with a huge number of reg-
istered devices but only a reduced number of them transmitting at a
time. However, the sparsity assumption may be helpful also in those
cases where the model is deliberately overcomplete to compensate
for an inadequate understanding of the phenomenon: Examples
include medical image processing and genetic analysis (see, e.g.,
[3, 4, 5D).

For a considerable number of problems, some prior informa-
tion exists that links two or more model parameters together. As an
example, think about sensors grouped by geographical position or
genes that activate in clusters. In other words, the unknown sparse
representation of the considered model is characterized by a specific
structure that can be exploited to improve algorithmic performance
in terms of accuracy or observation size (see, e.g., [6, 7]). This is
also the objective of this paper, which considers a sparse estimation
problem whose unknown parameters obey a distinctive sparsity pat-
tern.
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2. PROBLEM FORMULATION

We consider a classic multi-measurement vector (MMV) regression
problem where the measurement matrix, Y € RY*L | is modeled
as the product of the sampling matrix, S € RY*™ and the true
parameter matrix, X* € R™*% plus additive white Gaussian noise,
W e RV*E:

Y =SX*+W.

Specifically, we are interested in the underdetermined problem
where N < M. Even if such problem is ill-conditioned, com-
pressed sensing (CS) results (see, e.g., [8]) show that X* can be
recovered from Y with high accuracy under some mild assumptions
on S as long as X™ is sparse. One possible solution is to approximate
X* by

X:argm)én%HY—SX||g+)\HXH1 (1

where [|-||r denotes the Frobenius matrix norm, || X|[1 = >, /||
and where A is a real positive constant tuned to achieve the desired
sparsity order.

However, our model is characterized by a distinguishing spar-
sity structure (see also Fig. 1), which we would like to exploit to
improve the estimate precision. Specifically, we consider the case
where the nonzero elements of X™ are concentrated in few rows.
Moreover, each of these active rows has a fixed number of nonzero
elements, namely r. In other words, for each row r,,, € RE of X,
m = 1,2,..., M, problem (1) presents the additional constraint
that either

[emllo =0 or rmllo =7 @

with ||-||o the so-called “0O-norm,” that is the number of nonzero ele-
ments of a vector." One readily sees that this constraint is nonconvex
and should be handled with care.

We refer to [9] as an example of a practical application of this
model. There, the authors consider a random multiple access chan-
nel where active users are allowed to transmit in only 7 randomly
chosen slots within each L-slot-long frame. In that case, the columns
of S would represent the pilot signatures used to identify the devices,
while matrix X* would contain the channel coefficients that must be
estimated at the receiver side for coherent detection of the informa-
tion message.

2.1. Literature Overview

Even though there exists a notable number of works dealing with
structured sparsity, none seems to capture the specificities of the
model presented here. Consequently, only suboptimal solutions can

By extension, when applied to a scalar, ||z|jo = 1if  # 0 and zero
otherwise.
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Fig. 1. Graphical representation of the considered sparse signal
model: White blocks stand for zero matrix entries.

be found that may introduce penalizing approximations. For in-
stance, we could decide to ignore constraint (2) and simply look for a
row-sparse solution with one of the many algorithms that have been
devised for this purpose (see, e.g., [10] and references therein). Note
that, typically, algorithms promoting row sparsity result in a uniform
energy distribution among the entries of each active row and, gen-
erally, ||rm|lo = L for all active m. A possible fix consists in an
hard-decision step where we force to zero all entries other than the
r ones with the highest magnitude.

A slightly more sophisticated approach consists in modifying
constraint (2) to require that matrix X is a row-sparse matrix with
sparse rows. Such a structure can be induced by a double regularizer,
as explained in [3]. Namely, problem (1) subject to (2) is relaxed to

~ 1
X =argmin o||Y = SX[[f + p| X[z + AIX[ - (3)

where 11| X||z1 = p 30,
forcing row sparsity, while A||X]|1, A > 0 is the regularizer forcing
general sparsity and, in turn, sparsity within active rows. The result-
ing problem is convex and can be solved very efficiently. However,
as before, there is no control on the number of nonzero elements per
active row and one should rely again on the hard-decision step to ob-
tain exactly r nonzero entries per active row. Note that this step can
be carried out only once after solving (3) or, if applicable, after ev-
ery iteration of the solving algorithm (e.g., of the proximal gradient
method).

Other works in the literature allow for a more accurate char-
acterization of the sparsity structure. For example, one may mod-
ify (3) and replace the ¢2,1 /¢1 regularizer by a new ad-hoc one [11].
Another approach would be to extend classical greedy algorithms
like the Orthogonal Matching Pursuit (OMP) algorithm following
the ideas in, e.g., [12, 6]. Both cases, however, require an exhaustive
search over the atoms of the sparsity model: This can be a severe
limitation for the problem at hand where each row shows (f ) differ-
ent activation patterns.

\/m, > 0, is the regularizer

3. PROPOSED APPROACH

In this section we propose a novel approach for the estimation of
X™ subject to (2) that draws inspiration from the Generalized Dis-
tributive Law (GDL) and all the related message-passing algorithms
[13, 14]. The resulting method successively improves on the approx-
imation

N 1
X =argmin J|[Y - SX[E +A[Xllo st (D) @)

of the true X™ [note the difference in the regularizer with respect
to (1)] by carrying out simple computations on the columns and rows
of X in an iterative fashion.

Pt P41
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Fig. 2. Factor-graph representation of problem (5).

3.1. A Simplified Case

For the sake of clarity, let us suppose for now that constraint (2)
only holds for a single row, say m = 1 without loss of generality,
while all other rows are free to move in the solution space. Then,
problem (4) can be rewritten as

L
X =arg min Zqﬁil(xu) s.to IIrillo € {0,7} (5)

{=1,3, =1

where

M

m,lm=2

c . 1
é1,(r1) = . min 5”)’1 —Sxq||3 + Alxllo (6)

and where x; and y; are the /th columns of X and Y, respectively.
We will refer to ¢7 ;(x1,1) as the column-wise marginal (of the ob-
jective function) with respect to entry x1 ;.

Now, let us introduce a set of hidden state variables 01,; €
{0,1,...,L}, withl = 0,1,..., L, and define the state transition
according to

o1,0=0

o110 =011+ ||z1,1]lo-

Also, we associate a cost to the transition 01;-1 — o1, given by
#1,,(0) if [lz1,1]Jo = 0 and by ¢7 ; () = ming, , 20 $7;(1,1) when
|[z1,i]lo0 = 1. Then, solving problem (5) is equivalent to finding the
most likely (minimum cost) sequence of states with either 01,7, =
0 or 01,1, = r and can be achieved by a simple message-passing
algorithm on a factor graph similar to the one depicted in Fig. 2
[13, 14]. More specifically, we end up with a Viterbi-like algorithm
on a state trellis like the one of Fig. 3.

Remark: Note that, for the Viterbi algorithm to work, there
should generally be a noticeable difference between the values
¢7.,(0) and ¢7 ;(*). Indeed, if this is not the case, all sequences
take the same cost value and the minimization is meaningless. This
is the reason why we introduced the “O-norm” in (4): Due to the
discontinuous nature of ||-||o, the event ¢7, ;(0) = ¢y, ;(*) is much
less likely to happen as compared to other regularizers based on
proper continuous norms like, e.g., ||-||1.

Wrapping up, if constraint (2) referred to a single row, prob-
lem (4) would admit an “exact” solution that could be computed in
a single iteration by solving, first, column problems (6) and, second,
row problem (5) as explained above.? Next, we analyze why the ap-
proach is no longer “exact” when constraint (2) holds for all rows
of X.

2We write “exact” between quotation marks since some approximations
are introduced when computing the column-wise marginals, as explained in
Section 3.3.
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Fig. 3. Trellis representation of row problem (5) for L. = 8 and
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Fig. 4. Factor graph of the main problem and associated messages.
Each row function node can be further decomposed as in Fig. 2.

3.2. The Exhaustive Case

When constraint (2) holds for all rows of X, the above approach is
not rigorous anymore. Indeed, the presented solution relies on the
fact that, except for row 1, the objective function of (4) is separable
in the columns of X. This fact allows transforming (4) into (5) by
means of the marginalization operation in (6). Conversely, when all
constraints are in place, all variables are coupled to one another and
the decomposition is not possible anymore.

As explained in [13, 14], this difference is also evident from the
cycles of the factor-graph representation of the problem, depicted
in Fig. 4. Note that, for the simplified case, all row function nodes
disappear except for the first one, removing all cycles. In that case,
GDL-based algorithms are proven to converge in a single iteration
and give the exact solution. On the other hand, when cycles do exist,
GDL-algorithms do not return the exact solution in a single itera-
tion. Nevertheless, they typically give a good approximation after a
reasonable number of iterations (belief-propagation algorithms em-
ployed for, e.g., decoding LDPCs are classic examples of this behav-
ior).

For the iterative, fully-constrained version of our algorithm, ex-

pression (6) for the column-wise marginals must be replaced by

. 1 r
$m(@mi) = min Sy —Sxi[3+ Alxillo+ D Dk (@)
{zr, 1 ktm .
@)

and should be computed for all entries ., as opposed to the first
row only as in the simplified case (see also Section 3.3 below). In
this new expression we have introduced the row-wise marginals of
the objective function, namely

¢:n,l(:rm,l) = min
{zm,j}i#0

D i (@ms) ®)
J#l
subject t0 Tm,1,Tm,2,--.,Tm, corresponding to a feasible se-
quence of hidden states. It is not difficult to prove that these
functions can be obtained as a side result of the Viterbi algorithm
presented in the previous section. Also, they only take two values:
@1 (0) when x,, 1 = 0 and ¢y, ; (x) when 2,,, 1 7# 0.

The resulting algorithm, which iterates between (7) and (8) until
an exiting condition is met, is reported in Algorithm 1.

Algorithm 1 GDL-based algorithm
1: ¢p, 1 (@m,1) < Oforall m, 1

2: repeat
3: compute ¢y, ;(2m,1) according to (7) for all m,
4: compute @, ;(Tm,1) according to (8) for all m, I, with

(Tm,1,Tm,2, - .., Tm,1) feasible sequences
5: until an exit condition is met.

3.3. Column-wise Minimization

The algorithm presented in the previous section requires the com-
putation of the column-wise marginals @5, ; (1) according to (7).
Nevertheless, this is a combinatorial problem and its solution is not
trivial. A possible approach is outlined below.

To start with, recall that the row marginals, ¢,, ;(-), are on—off
functions, meaning that they can take only two values: ¢y, ;(0) when
Zm, = 0and ¢}, ;(*) otherwise. Then, (7) can be approximated by
the modified OMP algorithm in Algorithm 2. In the algorithm, s;
is the jth (normalized) column of S and S, denotes the submatrix
of S with columns indexed by €2;, the parameter support at step .
Moreover, Sgi stands for its Moore—Penrose pseudoinverse.

Algorithm 2 Modified OMP
L py Yy, 04 0,Q 0
2: repeat
3: 11+ 1
4: for all j ¢ ; do
5 v+ 5(87Pi_1)? + 85,(0) = 65, (%) — A
6: end for
7: ki < argmax; y;
8.
9
0:

Q01U {kl}
p; + (In — SQng]i)yl

10: until vy, <0

Recall that we are not interested in the full characterization of
G (@m 1) for all z,,,; € R, but only in ¢y, ;,(0) and ¢y, (%) =
ming , ,#0 @51 (Tm,1). The first value can be computed with Algo-
rithm 2 by forcing ¢}, ;(x) = +oo, which prevents the algorithm
from selecting index m in step 7. Similarly, by setting ¢}, ;(0) =
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Fig. 5. Performance comparison for different detection algorithms:
(a) the GDL-based algorithm presented in this paper, (b) algorithm
based on (1), (c) algorithm based on (3), (d) RA-ORMP MMV al-
gorithm [10]. For the last three cases, the algorithm is followed by
an hard-decision step that forces to zero all row elements other than
the r ones with the highest magnitude. The number of active rows is
fixed to either 5 (top) or 20 (bottom) and the SNR takes the values
(from left to right) 0 dB, 5dB and 10dB.

400, we ensure that index m is chosen in step 7 at the very first
iteration.

4. NUMERICAL RESULTS

We give here an assessment of the above results by numerical sim-
ulations. The entries of the sampling matrix S, with dimensions
N =40 and M = 200, are generated as independent and identically
distributed Gaussian random variables with zero mean and unitary
variance. The number of observations is L = 10. The parameter
matrix X* € RM*ZL has a fixed number of active rows (either 5 or
20) and, for each one of them, only » = 2 randomly selected entries
are generated as, again, zero mean unitary variance random vari-
ables. All other elements of X* are set to zero. The additive white
Gaussian noise has variance 1/SNR, with SNR € {0, 5,10} dB be-
ing the signal-to-noise ratio.

In Fig. 5, the proposed algorithm [labeled (a)] is compared to
three of the methods mentioned in Section 2.1, namely:

(b) aclassic CS column-by-column solution of (1);

(c) the solution to the £ /¢1-regularized minimization prob-
lem (3);

(d) the RA-ORMP algorithm for row-sparse MMV problems
proposed in [10].

For all these three options, row constraints (2) are enforced only af-
ter the algorithm has returned an unconstrained solution. Specifi-
cally, the r entries with the highest magnitude in each row are kept
active while all the others are set to zero. Note that, for all the re-
ported cases (that is, for all SNR values and number of active rows)
and for algorithms (b)—(d), the regularizer parameters A and p have
been tuned by extensive simulations to minimize the number of er-
rors in the recovery of the support of X*. On the other hand, for

the proposed algorithm (a), we used the same parameter A as for
the single-column algorithm (b) since, from the discussion in the
previous section, (a) can be considered an improvement on (b) and
column optimizations are indeed carried out in the first step of Algo-
rithm 1.

Performances are measured in terms of perfect row detection
(the algorithm correctly selects an active row as well as its r ac-
tive elements), row-only detection (the algorithm returns a wrong 7-
tuple of active elements in an actually active row), missed detection
and false detection of active rows. More precisely, the histograms
in Fig. 5 show the normalized count of the four events out of one
thousand runs. As one can readily see, the proposed algorithm out-
performs (by up to 25%) all other options in terms of perfect de-
tection, since it is the only one that inherently exploits the specified
row structure. The missed detection probability is also significantly
reduced. The only drawback is an increase in the false detection
probability when the number of active rows of X* is large (equal to
20 in our examples), but this can be probably corrected by specifi-
cally tuning the regularizer parameter A (as opposed to using the one
from (b), as explained above).

As for the benchmark algorithms, (b) and (c) show similar per-
formances, with the latter being slightly better. This was expected
since model (3) is somehow more representative of the parameter
structure than model (1). Finally, algorithm (d) is the one with the
poorest results: Since the number of active entries per active row is
low (2 out of 10), the energy of active and inactive rows is probably
too similar for algorithms like the RA-ORMP to work properly.

5. FINAL REMARKS

In this paper we have presented a GDL-inspired algorithm that tack-
les MMV regression problems where the unknown parameter matrix
presents few active rows. More importantly, zero and nonzero en-
tries of each active row follow characteristic patterns. Indeed, even
if we deal only with the simple case where the number of active el-
ements per active row is fixed and equal to 7, it is easy to see that
the same approach can be extended to more complex structures, as
long as they can be expressed by a succession of hidden states (see
Section 3).

Our simulation results show a considerable performance gain
over other solutions that rely on a relaxation of the row pattern con-
straint. This is especially important in applications that require the
estimated parameter matrix to be compliant with the sparsity struc-
ture, regardless of the extra complexity introduced by an iterative,
message-passing algorithm like the one presented here.
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